All Issue

2021 Vol.54, Issue 6 Preview Page

Research Article

30 June 2021. pp. 365-379
Abstract
References
1
Abbaszadeh, P., Moradkhani, H., and Yan, H. (2018). "Enhancing hydrologic data assimilation by evolutionary particle filter and Markov chain Monte Carlo." Advances in Water Resources, Vol. 111, pp. 192-204. doi: 10.1016/j.advwatres.2017.11.011 10.1016/j.advwatres.2017.11.011
2
Allen, R., Pereira, L., Raes, D., and Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations, Rome, Italy.
3
Brigode, P., Oudin, L., and Perrin, C. (2013). "Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change?" Journal of Hydrology, Vol. 476, pp. 410-425. doi: 10.1016/j.jhydrol.2012.11.012 10.1016/j.jhydrol.2012.11.012
4
Brown, A., Zhang, L., McMahon, T., Western, A., and Vertessy, R., (2005). "A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation." Journal of Hydrology, Vol. 310 No. 1-4, pp. 28-61. doi: 10.1016/j.jhydrol.2004.12.010 10.1016/j.jhydrol.2004.12.010
5
Cao, Y., Ye, Y., Liang, L., Zhao, H., Jiang, Y., Wang, H., Yi, Z., Shang, Y., and Yan, D. (2019). "A modified particle filter-based data assimilation method for a high-precision 2D hydrodynamic model considering spatial-temporal variability of roughness: Simulation of dam-break flood inundation." Water Resources Research, Vol. 55, pp. 6049-6068. doi: 10.1029/2018WR023568 10.1029/2018WR023568
6
Choi, D., Yang, J., Chung, G., and Kim, S. (2011). "A conceptual soil water model of catchment water balance: Which hydrologic components are needed to calibrated the model?" Journal of the Korean Society of Civil Engineers, Vol. 31, No. 3B, pp. 211-220. doi: 10.12652/Ksce.2011.31.3B.211 (in Korean) 10.12652/Ksce.2011.31.3B.211
7
Choi, J., Lee, O., Won, J., and Kim. S. (2020). "Stochastic simple hydrologic partitioning model associated with Markov chain Monte Carlo and ensemble Kalman filter." Journal of Korean Society on Water Environment, Vol. 36, No. 5, pp. 353-363. doi: 10.15681/KSWE.2020.36.5.353 (in Korean) 10.15681/KSWE.2020.36.5.353
8
Clark, M., Rupp, D., Woods, R., Zheng, X., Ibbitt, R., Slater, A., Schmidt, J., and Uddstrom, M. (2008). "Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model." Advances in Water Resources, Vol. 31, No. 10, pp. 1309-1324. doi: 10.1016/j.advwatres.2008.06.005 10.1016/j.advwatres.2008.06.005
9
de Vos, N., Rientjes, T., and Gupta, H. (2010). "Diagnostic evaluation of conceptual rainfall-runoff models using temporal clustering. Hydrological Processes, Vol. 24, No. 20, pp. 2840-2850. doi: 10.1002/hyp.7698 10.1002/hyp.7698
10
Dechantcm, M., and Moradkhani, H. (2012). "Examining the effectiveness and robustness of data assimilation methods for calibration and quantification of uncertainty in hydrologic forecasting." Water Resources Research, Vol. 48, W04518. doi: 10.1029/2011WR011011. 10.1029/2011WR011011
11
Deng, C., Liu, P., Guo, S., Li, Z., and Wang, D. (2016). "Identification of hydrological model parameter variation using ensemble Kalman filter." Hydrology and Earth System Sciences, Vol. 20, No. 12, pp. 4949-4961. doi: 10.5194/hess-20-4949-2016 10.5194/hess-20-4949-2016
12
Engel, B., Srinivasan, R., Arnold, J., Rewerts, C., and Brown, S. (1993). "Nonpoint-source (NPS) pollution modeling using models integrated with geographic information systems (GIS)." Water Science and Technology, Vol. 28, pp. 685-690. doi: 10.2166/wst.1993.0474 10.2166/wst.1993.0474
13
Fan, Y., Huang, G., Baetz, B., Li, Y., Huang, K., Chen, X., and Gao, M. (2017). "Development of integrated approaches for hydrological data assimilation through combination of ensemble Kalman filter and particle filter methods." Journal of Hydrology, Vol. 550, pp. 412-426. doi: 10.1016/j.jhydrol.2017.05.010 10.1016/j.jhydrol.2017.05.010
14
Feng, M., Liu, P., Guo, S., Shi, L., Deng, C., and Ming, B. (2017). "Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF." Water Resources Research, Vol. 53, No. 8, pp. 6885-6907. doi: 10.1002/2016wr020180. 10.1002/2016WR020180
15
Gharari, S., Hrachowitz, M., Fenicia, F., and Savenije, H. (2013). "An approach to identify time consistent model parameters: sub-period calibration." Hydrology and Earth System Science, Vol. 17, No. 1, pp. 149-161. doi: 10.5194/hess-17-149-2013 10.5194/hess-17-149-2013
16
Gordon, N., Salmond, D., and Smith, A. (1993). "Novel approach to nonlinear and non-Gaussian Bayesian state estimation." IEE Proceeding F (Radar and Signal Processing), Vol. 140, pp. 107-113. doi: 10.1049/ip-f-2.1993.0015 10.1049/ip-f-2.1993.0015
17
Guo, S., Wang, J., Xiong, L., Ying, A., and Li, D. (2002). "A macro-scale and semidistributed monthly water balance model to predict climate change impacts in China." Journal of Hydrology, Vol. 268, No. 1-4, pp, 1-15. doi: 10.1016/s0022-1694(02)00075-6 10.1016/S0022-1694(02)00075-6
18
Gupta, H., Kling, H., Yilmaz, K., and Martinez, G. (2009). "Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling." Journal of Hydrology, Vol. 377, pp. 80-91. doi: 10.1016/j.jhydrol.2009.08.003 10.1016/j.jhydrol.2009.08.003
19
Jeremiah, E., Marshall, L., Sisson, S.A., and Sharma, A. (2013). "Specifying a hierarchical mixture of experts for hydrologic modeling: Gating function variable selection." Water Resources Research, Vol. 49, No. 5, pp. 2926-2939. doi: 10.1002/wrcr.20150 10.1002/wrcr.20150
20
Lee, B., and Bae, D. (2011). "Streamflow forecast model on Nakdong river basin." Journal of Korea Water Resources Association, Vol. 50, No. 4, pp. 241-252. doi: 10.3741/JKWRA.2011.44.11.853 (in Korean) 10.3741/JKWRA.2011.44.11.853
21
Lee, D., Kim, Y., Yu, W., and Lee, G. (2017). "Evaluation on applicability of on/off-line parameter calibration techniques in rainfall-runoff modeling." Journal of Korea Water Resources Association, Vol. 50, No. 4, pp. 241-252. doi: 10.3741/JKWRA.2017.50.4.241 (in Korean) 10.3741/JKWRA.2017.50.4.241
22
Lee, J. (2006). Hydrology. Gumiseogwan.
23
Legesse, D., Vallet-Coulomb, C., and Gasse, F. (2003). "Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia." Journal of Hydrology, Vol. 275, No. 1-2, pp. 67-85. doi: 10.1016/s0022-1694(03)00019-2 10.1016/S0022-1694(03)00019-2
24
Leisenring, M., and Moradkhani, H. (2012). "Analysing the uncertainty of suspended sediment load prediction using sequential data assimilation." Journal of Hydrology, Vol. 468, pp. 268-282. doi: 10.1016/j.jhydrol.2012.08.049 10.1016/j.jhydrol.2012.08.049
25
Marshall, L., Sharma, A., and Nott, D. (2006). "Modeling the catchment via mixtures: Issues of model specification and validation." Water Resources Research, Vol. 42, No. 11, W11409. doi: 10.1029/2005wr004613 10.1029/2005WR004613
26
Merz, R., Parajka, J., and Bloeschl, G. (2011). "Time stability of catchment model parameters: Implications for climate impact analyses." Water Resources Research, Vol. 47, No. 2, W02531. doi: 10.1029/2010wr009505 10.1029/2010WR009505
27
Moradkhani, H., DeChant, C., and Sorooshian, S. (2012). "Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method." Water Resources Research, Vol. 48. No. 12, doi: 10.1029/2012wr012144. 10.1029/2012WR012144
28
Moradkhani, H., Hsu, K., Gupta, H., and Sorooshian, S. (2005a). "Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using particle filter." Water Resources Research, Vol. 41, W05012. doi: 10.1029/2004WR003604 10.1029/2004WR003604
29
Moradkhani, H., Sorooshian, S., Gupta, H., and Houser, P. (2005b). "Dual state-parameter estimation of hydrological models using ensemble Kalman filter." Advances in Water Resources, Vol. 28, No. 2, pp. 135-147. doi: 10.1016/j.advwatres.2004.09.002 10.1016/j.advwatres.2004.09.002
30
Nash, J., and Sutcliffe, J. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10, pp. 282-290. doi: 10.1016/0022-1694(70)90255-6 10.1016/0022-1694(70)90255-6
31
Noh, S., Tachikawa, Y., Shiiba, M., and Kim, S. (2011). "Dual state-parameter updating scheme on a conceptual hydrologic model using sequential Monte Carlo filters." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol. 67, pp. I_1-I_6. 10.2208/jscejhe.67.I_1
32
Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L., and Moradkhani, H. (2018). "Insights on the impact of systematic model errors on data assimilation performance in changing catchments." Advances in Water Resources, Vol. 113, pp. 202-222. doi: 10.1016/j.advwatres.2017.12.006 10.1016/j.advwatres.2017.12.006
33
Patil, S., and Stieglitz, M. (2015). "Comparing spatial and temporal transferability of hydrological model parameters." Journal of Hydrology, Vol. 525, pp. 409-417. doi: 10.1016/j.jhydrol.2015.04.003 10.1016/j.jhydrol.2015.04.003
34
Ritter, A., and Munoz-Carpena, R. (2013). "Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments." Journal of Hydrology, Vol. 480, pp. 33-45. doi: 10.1016/j.jhydrol.2012.12.004 10.1016/j.jhydrol.2012.12.004
35
Seibert, J., McDonnell, J., and Woodsmith, R. (2010). "Effects of wildfire on catchment runoff response: A modelling approach to detect changes in snow-dominated forested catchments." Hydrology Research, Vol. 41, No. 5, pp. 378-390. doi 10.2166/nh.2010.036 10.2166/nh.2010.036
36
Smith, P., Beven, K., and Tawn, J. (2008). "Detection of structural inadequacy in process-based hydrological models: A particle-filtering approach." Water Resources Research, Vol. 44, No. 1. doi: 10.1029/2006wr005205 10.1029/2006WR005205
37
Thirel, G., Andreassian, V., Perrin, C., Audouy, J., Berthet, L., Edwards, P. Folton, N., Furusho, C., Kuentz, A., Lerat, J., Lindstrom, G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland, D., and Vaze, J. (2015). "Hydrology under change: An evaluation protocol to investigate how hydrological models deal with changing catchments." Hydrological Sciences Journal, Vol. 60, No. 7-8, pp. 1184-1199. doi: 10.1080/02626667.2014.967248 10.1080/02626667.2014.967248
38
Vaze, J., Post, D., Chiew, F., Perraud, J., Viney, N., and Teng, J. (2010). "Climate non-stationarity-validity of calibrated rainfall-runoff models for use in climate change studies." Journal of Hydrology, Vol. 394, No. 3-4, pp. 447-457. doi: 10.1016/j.jhydrol.2010.09.018 10.1016/j.jhydrol.2010.09.018
39
Vrugt, J., Gupta, H., Bouten, W., and Sorooshian, S. (2003). "A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters." Water Resources Research, Vol. 39, No. 8. doi: 10.1029/2002WR001642 10.1029/2002WR001642
40
Vrugt, J., ter Braak, C., Diks, C., and Schoups, G. (2013). "Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications." Advances in Water Resources, Vol. 51, pp. 457-478. doi: 10.1016/j.advwatres.2012.04.002 10.1016/j.advwatres.2012.04.002
41
Wagener, T., McIntyre, N., Lees, M., Wheater, H., and Gupta, H. (2003). "Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis." Hydrological Process, Vol. 17, No. 2, pp. 455-476. doi: 10.1002/hyp.1135 10.1002/hyp.1135
42
Wang, D., Chen, Y., and Cai, X. (2009). "State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter." Water Resources Research, Vol. 45, No. 11, W11416. doi: 10.1029/2008wr007401 10.1029/2008WR007401
43
Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lambert, M. (2014). "A strategy for diagnosing and interpreting hydrological model nonstationarity." Water Resources Research, Vol. 50, No. 6, pp. 5090-5113. doi: 10.1002/2013wr014719 10.1002/2013WR014719
44
Won, J., Choi, J., Lee, O., and Kim, S. (2020). "Copula-based joint drought index using SPI and EDDI and its application to climate change." Science of Total Environment, Vol. 744, 140701. doi: 10.1016/j.scitotenv.2020.140701 10.1016/j.scitotenv.2020.14070132755772
45
Xiong, L., and Guo, S. (1999). "A two-parameter monthly water balance model and its application." Journal of Hydrology, Vol. 216, No. 1-2, pp. 111-123. doi: 10.1016/s0022-1694(98)00297-2 10.1016/S0022-1694(98)00297-2
46
Xiong, L., and Guo, S. (2012). "Appraisal of Budyko formula in calculating long-term water balance in humid watersheds of southern China." Hydrological Process, Vol. 26, No. 9, pp. 1370-1378. doi: 10.1002/hyp.8273 10.1002/hyp.8273
47
Xiong, L., Liu, P., Cheng, L., Deng, C., Gui, Z., Zhang, X., and Liu, Y. (2019). "Identifying time-varying hydrological model parameters to improve simulation efficiency by the ensemble Kalman filter: A joint assimilation of streamflow and actual evapotranspiration." Journal of Hydrology, Vol. 568, pp. 758-768. doi: 10.1016/j.jhydrol.2018.11.038 10.1016/j.jhydrol.2018.11.038
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 54
  • No :6
  • Pages :365-379
  • Received Date : 2021-02-16
  • Revised Date : 2021-04-19
  • Accepted Date : 2021-04-19