All Issue

2020 Vol.53, Issue 2 Preview Page

Research Article


February 2020. pp. 131-140
Abstract


References
1 

Bengio, Y., Simard, P., and Frasconi, P. (1994). "Learning long-term dependencies with gradient descent is difficult." IEEE Transactions on Neural Networks, IEEE Neural Networks Council, Vol. 5, No. 2, pp. 157-166.

10.1109/72.27918118267787
2 

Bloomfield, J.P., and Marchant, B.P. (2013). "Analysis of groundwater drought building on the standardised precipitation index approach." Hydrology and Earth System Sciences, European Geophysical Society, Vol. 17, No. 12, pp. 4769-4788.

10.5194/hess-17-4769-2013
3 

Chang, F.J., Chen, P.A., Lu, Y.R., Huang, E., and Chang, K.Y. (2014). "Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control." Journal of Hydrology, Crossref, Vol. 517, pp. 836-846.

10.1016/j.jhydrol.2014.06.013
4 

Ha, J.H., Lee, Y.H., and Kim, Y.H. (2016). "Forecasting the precipitation of the next day using deep learning." Journal of Korean Institute of Intelligent Systems, Korean Institute of Intelligent Systems, Vol. 26, No. 2, pp. 93-98.

10.5391/JKIIS.2016.26.2.093
5 

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Master's thesis, Technical University of Munich, Germany, pp. 1-65.

6 

Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Massachusetts Institute of Technology Press, M.A., U.S., Vol. 9, No. 8, pp. 1735-1780.

10.1162/neco.1997.9.8.17359377276
7 

Intergovernmental Panel on Climate Change (IPCC) (2015). Climate change 2014 synthesis report. IPCC, Switzerland.

8 

Jang, S.K., Lee, J.K., Kwon, H.H., Oh, J.H., and Jo, J.W. (2017). "Development and application of meteorological and hydrological drought indices for the drought monitoring and forecasting." Journal of Korean Society of Hazard Mitigation, Korean Society of Hazard Mitigation, Vol. 17, No. 6, pp. 37-51.

10.9798/KOSHAM.2017.17.6.37
9 

Jung, S.H., Lee, D.E., and Lee, K.S. (2018). "Prediction of river water level using deep-learning open library." Journal of Korean Society of Hazard Mitigation, Korean Society of Hazard Mitigation, Vol. 18, No. 1, pp. 1-11.

10.9798/KOSHAM.2018.18.1.1
10 

Kim, B.S., Kwon, H.H., and Kim, H.S. (2011). "Impact assessment of climate change on drought risk." Journal of Wetlands Research, Korean Wetlands Society, Vol. 13, No. 1, pp. 1-11.

11 

Kim, J.H., Lee, S.H., and Kim, B.S. (2018). "An assessment of past and future droughts in North Korea using standardized precipitation evapotranspiration index." Crisisonomy, Crisis and Emergency Management : Theory and Praxis, Vol. 14, No. 2, pp. 139-151.

10.14251/crisisonomy.2018.14.2.139
12 

Kumar, R., Musuuza, J.L., Van Loon, A.F., Teuling, A.J., Barthel, R., Broek, J.T., Mai, J., Samaniego, L., and Attinger, S. (2016). "Multiscale evaluation of the standardized precipitation index as a groundwater drought indicator." Hydrology and Earth System Sciences, European Geophysical Society, Vol. 20, No. 3, pp. 1117-1132.

10.5194/hess-20-1117-2016
13 

Lee, J.J., Kang, S.U., Jeong, J.H., and Chun, G.I. (2018). "Development of groundwater level monitoring and forecasting technique for drought analysis (I) - groundwater drought monitoring using standardized groundwater level index (SGI)." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 51, No. 11, pp. 1011-1020.

14 

Lee, J.J., Kang, S.U., Kim, T.H., and Chun, G.I. (2018). "Development of groundwater level monitoring and forecasting technique for drought analysis (II) - groundwater drought forecasting using SPI, SGI and ANN." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 51, No. 11, pp. 1021-1029.

15 

National Drought Information-Analysis Center (NDIAC) (2019). Republic of Korea, accessed 24 December 2019, <http://www. drought.go.kr/main.do>.

16 

Song, S.H. (2018). "Assessment of drought effects on groundwater system in rural area using standardized groundwater level index (SGI)." Journal of Soil and Groundwater Environment, Korean Society of Soil and Groundwater Environment, Vol. 23, No. 3, pp. 1-9.

17 

Tran, Q.K., and Song, S.K. (2016). "Water level forecasting based on deep learning: a use-case of trinity River-Texas-The United States." Journal of Korean Institute of Information Scientists and Engineers, Korean Institute of Information Scientists and Engineers, Vol. 44, No. 6, pp. 607-612.

10.5626/JOK.2017.44.6.607
18 

Water Environment Information System (WEIS) (2019). Republic of Korea, accessed 24 December 2019, <http://water.nier.go. kr/publicMain/mainContent.do>.

19 

Yeh, H.F., Chang, C.F., Lee, J.W., and Lee, C.H. (2016). "Using standardized groundwater index and standardized precipitation index to assess drought characteristics of the Kaoping River Basin, Taiwan." Water Resources, Springer, Vol. 46, No. 5, pp. 670-678.

10.1134/S0097807819050105
20 

Zhang, D., Lindholm, G., and Ratnaweera, H. (2018). "Use long short-term memory to enhance internet of things for combined sewer overflow monitoring." Journal of Hydrology, Elsevier, Vol. 556, pp. 409-418.

10.1016/j.jhydrol.2017.11.018
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 53
  • No :2
  • Pages :131-140
  • Received Date :2020. 01. 13
  • Revised Date :2020. 02. 01
  • Accepted Date : 2020. 02. 01