All Issue

2024 Vol.57, Issue 3 Preview Page

Research Article

31 March 2024. pp. 165-179
Abstract
References
1
Aston, A.R. (1979). "Rainfall interception by eight small trees." Journal of Hydrology, Elsevier, Vol. 42, No. 3, pp. 383-396. 10.1016/0022-1694(79)90057-X
2
Brasiel, H.C., and Lima, D.A. (2023). "Exploring the influence of wind, vegetation and water sources on the spread of forest fires in the Brazilian Cerrado biome using cellular automata." Proceedings of the 14th Workshop of Applied Computing for the Management of the Environment and Natural Resources (WCAMA), SBC, Porto Alegre, RS, Brasil, pp. 61-70. 10.5753/wcama.2023.230476
3
Choi, H., Lee, S., Woo, H., and Noh, S.J. (2023). "High-resolution urban flood modeling using cellular automata-based WCA2D in the Oncheon-cheon catchment in Busan, South Korea." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 43, No. 5, pp. 587-599.
4
Cooley, A., and Chang, H. (2017). "Precipitation intensity trend detection using hourly and daily observations in Portland, Oregon" Climate, MDPI, Vol. 5, No. 1, 10. 10.3390/cli5010010
5
Furnari, L., De Rango, A., Senatore, A., and Mendicino, G. (2024). "HydroCAL: A novel integrated surface-subsurface hydrological model based on the cellular automata paradigm." Advances in Water Resources, Vol. 185, 104623. 10.1016/j.advwatres.2024.104623
6
Ghimire, B., Chen, A.S., Guidolin, M., Keedwell, E.C., Djordjević, S., and Savić, D.A. (2013). "Formulation of a fast 2D urban pluvial flood model using a cellular automata approach." Journal of Hydroinformatics, IWA, Vol. 15, No. 3, pp. 676- 686. 10.2166/hydro.2012.245
7
Guidolin, M., Chen, A.S., Ghimire, B., Keedwell, E.C., Djordjević, S., and Savić, D.A. (2016). "A weighted cellular automata 2D inundation model for rapid flood analysis." Environmental Modelling & Software, Elsevier, Vol. 84, pp. 378-394. 10.1016/j.envsoft.2016.07.008
8
Guidolin, M., Duncan, A., Ghimire, B., Gibson, M., Keedwell, E., Chen, A.S., Djordjević, S., and Savić, D. (2012). "CADDIES: A new framework for rapid development of parallel cellular automata algorithms for flood simulation." Proceedings the 10th International Conference on Hydroinformatics (HIC 2012), Hamburg, Germany.
9
Jamali, B., Bach, P.M., Cunningham, L., and Deletic, A. (2019). "A cellular automata fast flood evaluation (CA-ffé) model." Water Resources Research, Vol. 55, No. 6, pp. 4936-4953. 10.1029/2018WR023679
10
Jang, C.H., Kim, D.H., and Kim, H.J. (2019). "Development of Dynamic Water resources Assessment Tool (DWAT)." Proceedings KSCE 2019 Convention, p. 297.
11
Jasour, Z.Y., Reilly, A.C., Tonn, G.L., and Ferreira, C.M. (2022). "Roadway flooding as a bellwether for household retreat in rural, coastal regions vulnerable to sea-level rise." Climate Risk Management, Elsevier, Vol. 36, 100425. 10.1016/j.crm.2022.100425
12
Kassogué, H., Bernoussi, A.S., Amharref, M., and Ouardouz, M. (2017). "Cellular automata approach for modelling climate change impact on water resources." International Journal of Parallel, Emergent and Distributed Systems, Vol. 34, No. 1, pp. 21-36. 10.1080/17445760.2017.1331438
13
Kawaike, K. (2002). Study on flood analysis method in urban area and its application to water resistance evaluation. Ph. D. dissertation, University of Kyoto, Kyoto, Japanese.
14
Kim, B., Noh, S.J., and Lee, S. (2022). "Retrospective analysis of the urban inundation and the impact assessment of the flood barrier using H12 model." Journal of Korea Water Resources Association, KWRA, Vol. 55, No. 5, pp. 345-356. 10.3741/JKWRA.2022.55.5.345
15
Kim, H.J., Jang, C.H., and Noh, S.J. (2012). "Development and application of the catchment hydrologic cycle assessment tool considering urbanization (I) - Model development -." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 2, pp. 203-215. 10.3741/JKWRA.2012.45.2.203
16
Lee, S. (2024). Development of cellular automata-based urban inundation and water cycle analysis model. Master Thesis, Kumoh National Institute of Technology.
17
Lee, S., Nakagawa, H., Kawaike, K., and Zhang, H. (2012). "Study on Inlet Discharge coefficient through the different shapes of storm drains for urban inundation analysis." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), JSCE, Vol. 68, No. 4, pp. 31-36. 10.2208/jscejhe.68.I_31
18
Lee, S., Nakagawa, H., Kawaike, K., and Zhang, H. (2013). "Experimental validation of interaction model at storm drain for development of integrated urban inundation model." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), JSCE, Vol. 69, No. 4, pp. 109-114. 10.2208/jscejhe.69.I_109
19
Lee, S., Noh, S.J., Jang, C., and Rhee, D.S. (2017). "Simulation and analysis of urban inundation using the integrated 1D-2D urban flood model." Journal of Korea Water Resources Association, KWRA, Vol. 50, No. 4, pp. 263-275. 10.3741/JKWRA.2017.50.4.263
20
Lee, S.J., Kim, Y.O., Lee, S.H., and Lee K.S. (2005). "Water cycle simulation for the Dorimcheon CatchmentUsing WEP model." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 6, pp. 449-460. 10.3741/JKWRA.2005.38.6.449
21
Lee, W.H., Lee, J.H., Park, J.H., and Choi, H.S. (2016a). "The relationship between parameters of the SWAT model and the geomorphological characteristics of a watershed." Ecology and Resilient Infrastructure, KSEIE, Vol. 3, No. 1, pp. 35-45. 10.17820/eri.2016.3.1.035
22
Lee, Y.G., Cho, Y.H., and Kim, S.J. (2016b). "Prediction of land-use change based on urban growth scenario in South Korea using CLUE-s model" Journal of the Korean Association of Geographic Information Studies, KAGIS, Vol. 19, No. 3, pp. 75-88. 10.11108/kagis.2016.19.3.075
23
Liu, L., Liu, Y., Wang, X., Yu, D., Liu, K., Huang, H., and Hu, G. (2015). "Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata." Natural Hazards and Earth System Sciences, Vol. 15, No. 3, pp. 381-391. 10.5194/nhess-15-381-2015
24
Noh, S.J., Kim, H.J., Jang, C.H., and Lee, Y.J. (2009). "Development of hydrologic components of CAT (Catchment hydrologic cycle Assessment Tool)." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 159-163.
25
Noh, S.J., Lee, J.-H., Lee, S., and Seo, D.-J. (2019). "Retrospective dynamic inundation mapping of Hurricane Harvey flooding in the Houston metropolitan area using high-resolution modeling and high-performance computing." Water, Vol. 11, No. 3, 597. 10.3390/w11030597
26
Noh, S.J., Lee, J.H., Lee, S., Kawaike, K., and Seo, D.J. (2018). "Hyper-resolution 1D-2D urban flood modelling using LiDAR data and hybrid parallelization." Environmental Modelling & Software, Vol. 103, pp. 131-145. 10.1016/j.envsoft.2018.02.008
27
Noh, S.J., Lee, S., An, H., Kawaike, K., and Nakagawa, H. (2016). "Ensemble urban flood simulation in comparison with laboratory-scale experiments: Impact of interaction models for manhole, sewer pipe, and surface flow." Advances in Water Resources, Elsevier, Vol. 97, pp. 25-37. 10.1016/j.advwatres.2016.08.015
28
Shao, Q., Weatherley, D., Huang, L., and Baumgartl, T. (2015). "RunCA: A cellular automata model for simulating surface runoff at different scales" Journal of Hydrology, Elsevier, Vol. 529, No. 3, pp. 816-829. 10.1016/j.jhydrol.2015.09.003
29
Von Hoyningen-Huene, J. (1983). Die interzeption des Niederschlages in landwirtschaftlichen Pflanzenbeständen. Report 57, Deutscher Verband für Wasserwirtschaft und Kulturbau, Hamburg, Berlin, pp. 1-66.
30
Wijaya, O.T., and Yang, T.H. (2021). "A novel hybrid approach based on cellular automata and a digital elevation model for rapid flood assessment." Water, MDPI, Vol. 13, No. 9, 1311. 10.3390/w13091311
31
Wing, O.E., Bates, P.D., Sampson, C.C., Smith, A.M., Johnson, K.A., and Erickson, T.A. (2017). "Validation of a 30 m resolution flood hazard model of the conterminous United States." Water Resources Research, Vol. 53, No. 9, pp. 7968-7986. 10.1002/2017WR020917
32
Yoon, D., and Koh, J.H. (2012). "A study on analysis of landslide disaster area using cellular Automata: An application to Umyeonsan, Seocho-Gu, Seoul, Korea." Spatial Information Research, KSIS, Vol. 20, No. 1, pp. 9-18. 10.12672/ksis.2012.20.1.009
33
Yu, D., and Lane, S.N. (2006). "Urban fluvial flood modelling using a two‐dimensional diffusion‐wave treatment, part 2: development of a sub‐grid‐scale treatment." Hydrological Processes, Vol. 20, No. 7, pp. 1567-1583. 10.1002/hyp.5936
34
Yu, D., and Lane, S.N. (2011). "Interactions between subgrid‐scale resolution, feature representation and grid‐scale resolution in flood inundation modelling." Hydrological Processes, Vol. 25, No. 1, pp. 36-53. 10.1002/hyp.7813
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 57
  • No :3
  • Pages :165-179
  • Received Date : 2024-01-16
  • Revised Date : 2024-02-16
  • Accepted Date : 2024-02-23