All Issue

2020 Vol.53, Issue 2 Preview Page

Research Article


February 2020. pp. 107-119
Abstract


References
1 

Ashrit, R.G., Kitoh, A., and Yukimoto, S. (2005). "Transient response of ENSO-monsoon teleconnection in MRICGCM2 climate change simulations." Journal of the Meteorological Society of Japan, Vol. 83, pp. 273-291.

10.2151/jmsj.83.273
2 

Dalezios, N.R., Loukas, A., Vasiliades, L., and Liakopoulos, E. (2000). "Severity-duration-frequency analysis of droughts and wet periods in Greece." Hydrological sciences journal, Vol. 45, No. 5, pp. 751-769.

10.1080/02626660009492375
3 

Dubrovský, M., Hayes, M., Duce, P., Trnka, M., Svoboda, M., and Zara, P. (2014). "Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region." Regional Environmental Change, Vol. 14, No. 5, pp. 1907-1919.

10.1007/s10113-013-0562-z
4 

Eum, H.I., and Cannon, A.J. (2017). "Intercomparison of projected changes in climate extremes for South Korea: application of trend preserving statistical downscaling methods to the CMIP5 ensemble." International Journal of Climatology, Vol. 37, pp. 3381-3397.

10.1002/joc.4924
5 

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2003). Bayesian data analysis. 2nd edition, Chapman & Hall, London.

6 

Gelman, A., and Shirley, K. (2011). "Inference from simulations and monitoring convergence." Handbook of markov chain monte carlo, Edited by Gelman, A., Jones, G., and Meng, X.L. Vol. 6, CRC press, U.S., pp. 163-174.

10.1201/b10905-7
7 

Gumbel, E.J. (1958). "Statistics of extremes". Columbia University Press, N.Y., U.S.

10.7312/gumb92958
8 

Hong, H.P., Park, S.Y., Kim., T.W., and Lee, J.H. (2018). "Assessment of CMIP5 GCMs for future extreme drought analysis." Journal of Korea Water Resource Association, Vol. 51, pp. 617-627.

9 

Intergovernmental Panel on Climate Change (IPCC) (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panle on Climate Change. Cambridge University Press, N.Y., U.S.

10 

Janga Reddy, M., and Ganguli, P. (2013). "Spatio-temporal analysis and deriviation of copula-based intensity-area-frequency curves for droughts in western rajasthan (India)." Stochastic environmental research and risk assessment, Vol. 27, pp. 1975-1989.

10.1007/s00477-013-0732-z
11 

Jeong, M.S., Yoon, S.K., Park, S.Y., Jung, J,W., and Lee, J.H. (2018). "Non-stationary frequency analysis of future extreme rainfall using CMIP5 GCMs over the Korean peninsula." Journal of Korean Society Hazard Mitigation, Vol. 18, No. 3, pp. 73-86.

10.9798/KOSHAM.2018.18.3.73
12 

Jung, T.H., Kim, H.B., Kim, H.S., and Heo, J.H. (2019). "Selection of climate indices for nonstationary frequency analysis and estimation of rainfall quantile." Journal of the Korean Society of Civil Engineers, Vol. 39, No. 1, pp. 165-174.

13 

Katz, R.W. (2013). "Statistical methods for nonstationary extremes." Extremes in a Changing Climate, Edited by A., AghaKouchack, D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, Vol. 65, Springer, Dordrecht, Netherlands.

10.1007/978-94-007-4479-0_2
14 

Kim, C.J., Park, M.J., and Lee, J.H. (2014). "Analysis of climate change impacts on the spatial and frequency patterns of drought using a potential drought hazard mapping approach." International Journal of Climatology, Vol. 34, pp. 61-80.

10.1002/joc.3666
15 

Leadbetter, M.R., Lindgren, G., and Rootzén, H. (1983). Extremes and related properties of random sequences and processes. Springer Science & Business Media, Springer, N.Y., U.S.

10.1007/978-1-4612-5449-2
16 

Lee, J.H., Jang, H.W., Kim, J.S., and Kim, T.W. (2015). "Quantitative characterization of historical drought events in Korea." Journal of Korea Water Resource Association, Vol. 48, No. 12, pp. 1011-1021.

10.3741/JKWRA.2015.48.12.1011
17 

Lee, J.H., Kwon, H.H., Jang, H.W., and Kim, T.W. (2016a). "Future changes in drought characteristics under extreme climate change over South Korea." Advances in Meteorology, Vol. 2016, Article ID 9164265, pp. 19.

10.1155/2016/9164265
18 

Lee, J.J., Kwon, H.H., and Kim, T.W. (2010). "Concept of trend analysis of hydrologic extreme variables and nonstationary frequency analysis." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 4B, pp. 389-397.

19 

Lee, O.J., Park, M.W., Lee, J.H., and Kim, S.D. (2016b). "Future PMPs projection according to precipitation variation under RCP 8.5 climate change scenario." Journal of Korea Water Resources Association, Vol. 49, No. 2, pp. 107-119.

10.3741/JKWRA.2016.49.2.107
20 

Lee, S.E., and Zhang, B.T. (2002). "A bayesian evolutionary algorithm with multiple markov chains." Journal of Computing Science and Engineering, Korean Insitute Of Information Scientists And Engineers, Vol. 29, No. 1B, pp. 322-324.

21 

Mckee, T.B., Doesken, N.J., and Kleist, J. (1995). "Drought monitering with multiple time scales preprints." 9th Conference on Applied Climatology, Dallas, T.X., U.S., pp. 233-236.

22 

McMahon, T.A., Peel, M.C., and Karoly, D.J. (2015). "Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation." Hydrology and Earth System Sciences, Vol. 19, No. 1, pp. 361-377.

10.5194/hess-19-361-2015
23 

Meehl, G.A., and Arblaster, J.M. (2003). "Mechanisms for projected future changes in South Asian monsoon precipitation." Climate Dynamics, Vol. 21, pp. 659-675.

10.1007/s00382-003-0343-3
24 

Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P., and Stouffer, R.J. (2008). "Stationarity is dead: whither water management?" Science, Vol. 319, pp. 573-574.

10.1126/science.115191518239110
25 

Park, M.W., Sim, H.J., Park, Y.K., and Kim, S.D. (2015). "Drought severity-duration-frequency analysis based on KMA 1-km resolution RCP scenario." Journal of Korean Society Hazard Mitigation, Vol. 15, No. 3, pp. 347-355.

10.9798/KOSHAM.2015.15.3.347
26 

Renard, B., Sun, X., and Lang, M. (2013). "Bayesian methods for non-stationary extreme value analysis." Extremes in a Changing Climate, Springer, Dordrecht, Netherlands.

10.1007/978-94-007-4479-0_3
27 

Sherri, M., Boulkaibet, I., Marwala, T., and Friswell, M. (2017). "A differential evaluation markov chain monte carlo algorithm for bayesian model updating." arXiv preprint arXiv:1710.09486.

10.1007/978-3-319-75390-4_9
28 

Storn, R., and Price, K. (1997). "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces." Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359.

10.1023/A:1008202821328
29 

Vrugt, J.A., Ter Braak, C.J.F., Diks, C.G.H., Robinson, B.A., Hyman, J.M., and Higdon, D. (2009). "Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling." International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 10, No. 3, pp. 273-290.

10.1515/IJNSNS.2009.10.3.273
30 

Waagepetersen, R., and Sorensen, D. (2001). "A tutorial on reversible jump MCMC with a view toward applications in QTL-mapping." International Statistical Review, Vol. 69, pp. 49-61.

10.1111/j.1751-5823.2001.tb00479.x
31 

Yoon, S.K., and Cho, J.P. (2015). "The uncertainty of extreme rainfall in the near future and its frequency analysis over the korean peninsula using CMIP5 GCMs." Journal of Korea Water Resources Association, Vol. 48, No. 10, pp. 817-830.

10.3741/JKWRA.2015.48.10.817
32 

Yoon, S.K., Jang, S.M., Rhee, J.Y., and Cho, J.P. (2017). "Analysis of future extreme rainfall under climate change over the landslide risk zone in urban areas." Journal of Korean society Hazard Mitigation, Vol. 17, No. 5, pp. 355-367.

10.9798/KOSHAM.2017.17.5.355
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 53
  • No :2
  • Pages :107-119
  • Received Date :2019. 11. 25
  • Revised Date :2020. 01. 03
  • Accepted Date : 2020. 01. 03