All Issue

2025 Vol.58, Issue 2

Research Article

28 February 2025. pp. 91-103
Abstract
References
1

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J. (2019). "Machine learning for precipitation nowcasting from radar images." arXiv Preprint,arXiv:1912.12132.

2

Ayzel, G., Scheffer, T., and Heistermann, M. (2020). "RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting." Geoscientific Model Development, Vol. 13, No. 6, pp. 2631-2644. doi: 10.5194/gmd-13-2631-2020.

10.5194/gmd-13-2631-2020
3

Bárdossy, A., and Pegram, G. (2017). "Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes." Journal of Hydrology, Vol. 544, pp. 397-406. doi: 10.1016/j.jhydrol.2016.11.039.

10.1016/j.jhydrol.2016.11.039
4

Basist, A., Bell, G.D., and Meentemeyer, V. (1994). "Statistical relationships between topography and precipitation patterns." Journal of Climate, Vol. 7, No. 9, pp. 1305-1315.

10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2
5

Berndt, C., Rabiei, E., and Haberlandt, U. (2014). "Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios." Journal of Hydrology, Vol. 508, pp. 88-101. doi: 10.1016/j.jhydrol.2013.10.028.

10.1016/j.jhydrol.2013.10.028
6

Borup, M., Grum, M., Linde, J.J., and Mikkelsen, P.S. (2016). "Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow." Journal of Hydrology, Vol. 539, pp. 687-699. doi: 10.1016/j.jhydrol.2016.05.002.

10.1016/j.jhydrol.2016.05.002
7

Choi, H., Seo, J.-J., Bae, J., Kim, S., and Lee, K.-M. (2018). "Improvement of non-linear estimation equation of rainfall intensity over the Korean Peninsula by using the brightness temperature of satellite and radar reflectivity data." Journal of the Korean Earth Science Society, KESS, Vol. 39, No. 2, pp. 131-138. doi: 10.5467/jkess.2018.39.2.131.

10.5467/JKESS.2018.39.2.131
8

Choi, S., and Kim, Y. (2022). "Rad-cGAN v1.0: Radar-based precipitation nowcasting model with conditional generative adversarial networks for multiple dam domains." Geoscientific Model Development, Vol. 15, No. 15, pp. 5967-5985.

10.5194/gmd-15-5967-2022
9

Clark, A., Donahue, J., and Simonyan, K. (2019). "Adversarial video generation on complex datasets." arXiv Preprint, arXiv: 1907.06571.

10

Cole, S.J., and Moore, R.J. (2008). "Hydrological modelling using raingauge- and radar-based estimators of areal rainfall." Journal of Hydrology, Vol. 358, pp. 159-181.

10.1016/j.jhydrol.2008.05.025
11

Cui, Y., Qiu, Y., Sun, L., Shu, X., and Lu, Z. (2022). "Quantitative short-term precipitation model using multimodal data fusion based on a cross-attention mechanism." Remote Sensing, Vol. 14, No. 22, 5839.

10.3390/rs14225839
12

Einfalt, T., Arnbjerg-Nielsen, K., Golz, C., Jensen, N.-E., Quirmbachd, M., Vaes, G., and Vieux, B. (2004). "Towards a roadmap for use of radar rainfall data in urban drainage." Journal of Hydrology, Vol. 299, pp. 186-202.

10.1016/S0022-1694(04)00365-8
13

Fulton, R.A., Breidenbach, J.P., Seo, D.-J., and Miller, D.A. (1998). "The WSR-88D rainfall algorithm." Weather and Forecasting, Vol. 13, No. 2, pp. 377-395. doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
14

Gires, A., Onof, C., Maksimović, Č., Schertzer, D., Tchiguirinskaia, I., and Simoes, N. (2012). "Quantifying the impact of small scale unmeasured rainfall variability on urban runoff through multifractal downscaling: A case study." Journal of Hydrology, Vol. 442, pp. 117-128. doi: 10.1016/j.jhydrol.2012.04.005.

10.1016/j.jhydrol.2012.04.005
15

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). "Generative adversarial nets." Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, Canada, pp. 2672-2680.

16

Haberlandt, U. (2007). "Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event." Journal of Hydrology, Vol. 332, No. 1-2, pp. 144-157. doi: 10.1016/j.jhydrol.2006.06.028.

10.1016/j.jhydrol.2006.06.028
17

Harrison, D.L., Scovell, R.W., and Kitchen, M. (2009). "High-resolution precipitation estimates for hydrological uses." Proceedings of the Institution of Civil Engineers: Water Management, Vol. 162, No. 2, pp. 125-135. doi: 10.1680/wama.2009.162.2.125.

10.1680/wama.2009.162.2.125
18

Huang, J., Jing, C., Fu, J., and Huang, Z. (2019). "Uncertainty analysis of rainfall spatial interpolation in urban small area." In Testbeds and Research Infrastructures for the Development of Networks and Communities: 13th EAI International Conference, TridentCom 2018, Shanghai, China, Proceedings 13, pp. 79-95.

10.1007/978-3-030-12971-2_5
19

Isola, P., Zhu, J., Zhou, T., and Efros, A.A. (2017). "Image-to-image translation with conditional adversarial networks." 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, U.S., pp. 1125-1134.

10.1109/CVPR.2017.632
20

Kim, B.S., Hong, J.B., Kim, H.S., and Choi, K.H. (2007). "Combining radar and rain gauge rainfall estimates for flood forecasting using conditional merging method." Korean Society of Civil Engineers, Vol. 27, pp. 255-265.

10.1061/40927(243)414
21

Kim, K.J., Choi, J.H., and Yoo, C.S. (2008). "Synthesis of radar measurements and ground measurements using the Successive Correction Method (SCM)." Journal of Korea Water Resources Association, Vol. 41, pp. 681-692.

10.3741/JKWRA.2008.41.7.681
22

Kim, S., Kim, Y., Ghorbani, M.A., and Kim, D. (2024). "Analysis on the temporal scaling behavior of extreme rainfall in Korean Peninsula based on high-resolution radar-based precipitation data." Journal of Hydrology: Regional Studies, Vol. 55, 101915.

10.1016/j.ejrh.2024.101915
23

Krajewski, W.F., Villarini, G., and Smith, J.A. (2010). "Radar- rainfall uncertainties: Where we are after thirty years of effort." Bulletin of the American Meteorological Society, Vol. 91, No. 1, pp. 87-94. doi: 10.1175/2009bams2747.1.

10.1175/2009BAMS2747.1
24

Marshall, J.S., and Palmer, W.M.K. (1948). "The distribution of raindrops with size." Journal of Atmospheric Sciences, Vol. 5, No. 4, pp. 165-166.

10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
25

Mirza, M., and Osindero, S. (2014). "Conditional generative adversarial nets." arXiv Preprint, arXiv:1411.1784.

26

Moraux, A., Dewitte, S., Cornelis, B., and Munteanu, A. (2021). "A deep learning multimodal method for precipitation estimation." Remote Sensing, Vol. 13, No. 16, 3278.

10.3390/rs13163278
27

Ochoa-Rodriguez, S., Wang, L.-P., Gires, A., Pina, R.D., Reinoso- Rondinel, R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., and van Assel, J., et al. (2015). "Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation." Journal of Hydrology, Vol. 531, pp. 389-407. doi: 10.1016/j.jhydrol.2015.05.035.

10.1016/j.jhydrol.2015.05.035
28

Prudhomme, C., and Reed, D.W. (1998). "Relationships between extreme daily precipitation and topography in a mountainous region: A case study in Scotland." International Journal of Climatology: A Journal of the Royal Meteorological Society, Vol. 18, No. 13, pp. 1439-1453.

10.1002/(SICI)1097-0088(19981115)18:13<1439::AID-JOC320>3.0.CO;2-7
29

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., and Madge, S. (2021). "Skillful precipitation nowcasting using deep generative models of radar." arXiv preprint, arXiv: 2104.00954.

10.1038/s41586-021-03854-z34588668PMC8481123
30

Rüttgers, M., Lee, S., Jeon, S., and You, D. (2019). "Prediction of a typhoon track using a generative adversarial network and satellite images." Scientific Reports, Vol. 9, No. 1, 6057.

10.1038/s41598-019-42339-y30988405PMC6465318
31

Schellart, A.N.A., Shepherd, W.J., and Saul, A.J. (2012). "Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale." Advances in Water Resources, Vol. 45, pp. 65-75. doi: 10.1016/j.advwatres.2011.10.012.

10.1016/j.advwatres.2011.10.012
32

Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., and Woo, W.C. (2015). "Convolutional LSTM network: A machine learning approach for precipitation nowcasting." Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15), MIT Press, Cambridge, MA, U.S., pp. 802-810.

33

Shin, Y., Han, D., and Im, J.. (2021). "Rainfall intensity estimation using geostationary satellite data based on machine learning: A case study in the Korean Peninsula in summer." Korean Journal of Remote Sensing, Vol. 37, No. 5, pp. 1405-1423. doi: 10.7780/kjrs.2021.37.5.3.6.

34

Trebing, K., Staǹczyk, T., and Mehrkanoon, S. (2021). "SmaAt- UNet: Precipitation nowcasting using a small attention-UNet architecture." Pattern Recognition Letters, Vol. 145, pp. 178- 186. doi: 10.1016/j.patrec.2021.01.036.

10.1016/j.patrec.2021.01.036
35

Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., and Kennedy, P.J. (2016). "Training deep neural networks on imbalanced data sets." 2016 International Joint Conference on Neural Networks (IJCNN), IEEE, Vancouver, BC, Canada, pp. 4368-4374.

10.1109/IJCNN.2016.7727770
36

Ware, E.C. (2005). Corrections to radar-estimated precipitation using observed raingauge data. Master Thesis, Cornell University, Ithaca, NY, U.S., p. 96.

37

Wright, D.B., Smith, J.A., Villarini, G., and Baeck, M.L. (2014). "Long-term high-resolution radar rainfall fields for urban hydrology." Journal of the American Water Resources Association, Vol. 50, No. 3, pp. 713-734. doi: 10.1111/jawr.12139.

10.1111/jawr.12139
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 58
  • No :2
  • Pages :91-103
  • Received Date : 2024-11-09
  • Revised Date : 2024-12-04
  • Accepted Date : 2024-12-09