All Issue

2025 Vol.58, Issue 9 Preview Page

Research Article

30 September 2025. pp. 771-779
Abstract
References
1

Aghakouchak, A., Chiang, F., Huning, L.S., Love, C.A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S.M., Ragno, E., and Sadegh, M. (2020). “Climate extremes and compound hazards in a warming world.” Annual Review of Earth and Planetary Sciences, Vol. 48, pp. 519-548, doi: 10.1146/annurev-earth-071719-055228.

10.1146/annurev-earth-071719-055228
2

Alcantara, A., and Ahn, K-H. (2020). “Probability distribution and characterization of daily precipitation related to tropical cyclones over the Korean Peninsula.” Water, Vol. 12, 1214. doi: 10.3390/w12041214.

10.3390/w12041214
3

Alexander, D., and Pescaroli, G. (2019). “What are cascading disasters?.” UCL Open Environment, 1. doi: 10.14324/111.444/ucloe.000003.

10.14324/111.444/ucloe.00000337228248PMC10171413
4

Choi, Y.W., Kim., D.I., and Yoon, D.K. (2024). “Analysis of multi- hazard typologies and characteristics using topic modeling and network analysis.” Journal of The Korean Society of Hazard Mitigatio, Vol. 24, No. 6, pp. 117-129. doi: 10.9798/KOSHAM.2024.24.6.117.

10.9798/KOSHAM.2024.24.6.117
5

Collins, M., Sutherland, M., Bouwer, L., Cheong, S.-M., Frölicher, T., Jacot Des Combes, H., Koll Roxy, M., Losada, I., McInnes, K., Ratter, B., Rivera-Arriaga, E., Susanto, R.D., Swingedouw, D., and Tibig, L. (2019). “Extremes, abrupt changes and managing risk.” IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Edited by Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M., Cambridge University Press, Cambridge, UK and New York, NY, U.S., pp. 589-655. doi: 10.1017/9781009157964.008.

10.1017/9781009157964.008
6

Goodison, B.E., Louie, P.Y.T., and Yang, D. (1998) WMO solid precipitation measurement intercomparison, final report, WMO/TD-No.872, WMO, Geneva,

7

Kim, W.-S., Yoon, D.K., Choi, Y., and Hong, Y.-J. (2022). “A comparative analysis of complex disaster research trends using network analysis.” Journal of The Korean Society of Disaster Information, Vol. 18, No. 4, pp. 908-921. doi: 10.15683/kosdi.2022.12.31.908.

10.15683/kosdi.2022.12.31.908
8

Kim, Y.-J., Yeh, S.-W., Choi, Y.-S., Son, S.-W., Oh, S.-G., Yang, Y.-M., and Kim J. (2025). “The need for climate risk assessment in response to the increasing occurrence of compound drought-heatwave events in Republic of Korea.” Atmosphere-Korea, Vol. 35, No. 1, pp. 13-27. doi: 10.14191/Atmos.2025.35.1.013.

10.14191/Atmos.2025.35.1.013
9

Ma, F., and Yuan, X. (2023). “When will the unprecedented 2022 summer heat waves in Yangtze River basin become normal in a warming climate?.” Geophysical Research Letters, Vol. 50, e2022GL101946. doi: 10.1029/2022GL101946.

10.1029/2022GL101946
10

Mann, H.B. (1945). “Non-parametric test against trend. econometric society.” Vol. 13, pp. 245-259. doi: 10.2307/1907187.

10.2307/1907187
11

Marengo, J.A., Costa, M.C., Cunha, A.P., Espinoza, J.-C., Jimenez, J.C., Libonati, R., Miranda, V., Trigo, I.F., Sierra, J.P., and Geirinhas, J.L. et al. (2025). “Climatological patterns of heatwaves during winter and spring 2023 and trends for the period 1979-2023 in ceteral south America.” Frontiers in Climate, Vol 7, 1529082. doi: 10.3389/fclim.2025.1529082.

10.3389/fclim.2025.1529082
12

Mazdiyasni, O., and AghaKouchak, A. (2015). “Substantial increase in concurrent droughts and heatwaves in the United States,” Proceedings of the National Academy of Sciences, Vol. 112, No. 37, pp. 11484-11489. doi: 10.1073/pnas.1422945112.

10.1073/pnas.142294511226324927PMC4577202
13

McKee, T.B., Doesken, N.J., and Kleist, J. (1993) “The relationship of drought frequency and duration to time scales.” 8th Conference on Applied Climatology, Anaheim, CA, U.S., pp. 179-184.

14

Mukherjee, S., and Mishra, A.K. (2021). “Increase in compound drought and heatwaves in a warming world.” Geophysical Research Letters, Vol. 48, e2020GL090617. doi: 10.1029/2020GL090617.

10.1029/2020GL090617
15

Perkins, S.E., Alexander, L.V., and Nairn, J.R. (2012). “Increasing frequency, intensity and duration of observed global heatwaves and warm spells.” Geophysical Research Letters, Vol. 39, L20714. doi: 10.1029/2012GL053361.

10.1029/2012GL053361
16

Perkins-Kirkpatrick, S.E., and Lewis, S.C. (2020). “Increasing trends in regional heatwaves.” Nature Communications, Vol. 11, pp. 3357. doi: 10.1038/s41467-020-16970-7.

10.1038/s41467-020-16970-732620857PMC7334217
17

Ridder, N.N., Ukkola, A.M., Pitman, A.J., and Perkins-Kirkpatrick, S.E. (2022). “Increased occurrence of high impact compound events under climate change.” npj Climate and Atmospheric Science, Vol. 5, 3. doi: 10.1038/s41612-021-00224-4.

10.1038/s41612-021-00224-4
18

Russo, S., Sillmann, J., and Fischer, E.M. (2015). “Top ten European heatwaves since 1950 and their occurrence in the coming decades.” Environmental Research Letters, Vol. 10, No. 12, 124003. doi: 10.1088/1748-9326/10/12/124003.

10.1088/1748-9326/10/12/124003
19

Seneviratne, S.I., Donat, M.G., Mueller, B., and Alexander, L.V. (2014). “No pause in the increase of hot temperature extremes.” Nature Climate Change, Vol. 4, pp. 161-163. doi: 10.1038/nclimate2145.

10.1038/nclimate2145
20

Shan, B., Verhoest, N.E.C., and De Baets, B. (2024). “Identification of compound drought and heatwave events on a daily scale and across four seasons.” Hydrology and Earth System Sciences, Vol. 28, No. 9, pp. 2065-2080. doi: 10.5194/hess-28-2065-2024.

10.5194/hess-28-2065-2024
21

Singh, D., Crimmins, A.R., Pflug, J.M., Barnard, P.L., Helgeson, J.F., Hoell, A., Jacobs, F.H., Jacox, M.G., Jerolleman, A., and Wehner, M.F. (2023). “Focus on compound events.” Fifth National Climate Assessment. Edited by Crimmins, A.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Stewart, B.C. and Maycock, T.K., U.S. Global Change Research Program, Washington, DC, U.S.

10.7930/NCA5.2023.F1
22

Sung, K., and Stagge, J.H. (2022) “Nonlinear seasonal and long-term trends in a twentieth-century meteorological drought index across the continental United States.” Journal of Climate, Vol. 35, pp. 6161-6174. doi: 10.1175/JCLI-D-22-0045.1.

10.1175/JCLI-D-22-0045.1
23

Sung, K., Torbenson, M.C.A., and Stagge, J.H. (2024). “Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends.” Hydrology and Earth System Sciences, Vol. 28, No. 9, pp. 2047-2063. doi: 10.5194/hess-28-2047-2024.

10.5194/hess-28-2047-2024
24

Tripathy, K.P., Mukherjee, S., Mishra, A.K., Mann, M.E., and Williams, A.P. (2023) “Climate change will accelerate the high-end risk of compound drought and heatwave events.” Proceedings of the National Academy of Sciences, Vol. 120, No. 28, e2219825120. doi: 10.1073/pnas.2219825120.

10.1073/pnas.221982512037399379PMC10334742
25

Vicente-Serrano, S.M., Domínguez-Castro, F., Murphy, C., Peña-Angulo, D., Tomas-Burguera, M., Noguera, I., López-Moreno, J.I., Juez, C., Grainger, S., Eklundh, L. et al. (2021). “Increased vegetation inmountainous headwaters amplifieswater stress during dry periods.” Geophysical Research Letters, Vol. 48, No. 18, e2021GL094672. doi: 10.1029/2021GL094672.

10.1029/2021GL094672
26

World Meteorological Organization (WMO) (2024). Standardized precipitation index user guide. WMO-no. 1090, Geneva, Swiss.

27

Zscheischler, J., Westra, S., van den Hurk, B.J.J.M., Seneviratne, S.I., Ward, P.J., Pitman, A., AghaKouchak, A., Bresch, D.N., Leonard, M., Wahl, T., and Zhang, X. (2018). “Future climate risk from compound events.” Nature Climate Change, Vol. 8, pp. 469-477. doi: 10.1038/s41558-018-0156-3.

10.1038/s41558-018-0156-3
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 58
  • No :9
  • Pages :771-779
  • Received Date : 2025-07-26
  • Revised Date : 2025-08-13
  • Accepted Date : 2025-08-19