Research Article
Berkhahn, S., Fuchs, L., and Neuweiler, I. (2019). "An ensemble neural network model for real-time prediction of urban floods." Journal of Hydrology, Elsevier, Vol. 575, pp. 743-754.
10.1016/j.jhydrol.2019.05.066Burrichter, B., Hofmann, J., Koltermann da Silva, J., Niemann, A., and Quirmbach, M. (2023). "A spatiotemporal deep learning approach for urban pluvial flood forecasting with multi-source data." Water, MDPI, Vol. 15, No. 9, 1760.
10.3390/w15091760Busan Ilbo (BI) (2020). Busan turned into a 'Sea of Water' Overnight... 3 dead due to flooding and collapses, accessed 12 August 2024, <https://www.busan.com/view/busan/view.php?code=2020072409302417962>.
Choi, H., Lee, S., Woo, H., and Noh, S.J. (2023a) "High-resolution urban flood modeling using cellular automata-based WCA2D in the Oncheon-cheon catchment in Busan, South Korea." Journal of Civil and Environmental Engineering Research, KSCE, Vol. 43, No. 5, pp. 587-599.
Choi, H., Lee, S., Woo, H., Kim, M., and Noh, S.J. (2023b). "Applying deep learning based super-resolution technique for high- resolution urban flood analysis." Journal of Korea Water Resources Association, KWRA, Vol. 56, No. 10, pp. 641-653.
Environment Agency (EA) (2013). What is the updated flood map for surface water? Bristol, UK, p. 26.
Guidolin, M., Chen, A.S., Ghimire, B., Keedwell, E.C., Djordjević, S., and Savić, D.A. (2016). "A weighted cellular automata 2D inundation model for rapid flood analysis." Environmental Modelling & Software, Vol. 84, pp. 378-394.
10.1016/j.envsoft.2016.07.008Guo, Z., Leitão, J.P., Simões, N.E., and Moosavi, V. (2021). "Data- driven flood emulation: Speeding up urban flood predictions by deep convolutional neural networks." Journal of Flood Risk Management, Vol. 14, No. 1, e12684.
10.1111/jfr3.12684Gyeonggi Metropolitan News (IMNEWS) (2024). The impact of climate change on the agricultural sector in Gyeonggi Province. accessed 19 June 2024, <http://www.iwnews.co.kr/bbs/board.php?bo_table=news&wr_id=22324>.
Hofmann, J., and Schüttrumpf, H. (2021). "floodGAN: Using deep adversarial learning to predict pluvial flooding in real time." Water, MDPI, Vol. 13, No. 16, 2255.
10.3390/w13162255Hosseiny, H. (2021). "A deep learning model for predicting river flood depth and extent." Environmental Modelling & Software, Vol. 145, 105186.
10.1016/j.envsoft.2021.105186Jung, J., Mo, H., Lee, J., Yoo, Y., and Kim, H.S. (2021). "Flood stage forecasting at the Gurye-Gyo station in Sumjin River using LSTM-based deep learning models." Journal of the Korean Society of Hazard Mitigation, KOSHAM, Vol. 21, No. 3, pp. 193-201.
10.9798/KOSHAM.2021.21.3.193Jung, S., Cho, H., Kim, J and Lee, G. (2018). "Prediction of water level in a tidal river using a deep-learning based LSTM model." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 12, pp. 1207-1216.
Kabir, S., Patidar, S., Xia, X., Liang, Q., Neal, J., and Pender, G. (2020). "A deep convolutional neural network model for rapid prediction of fluvial flood inundation." Journal of Hydrology, Elsevier, Vol. 590, 125481.
10.1016/j.jhydrol.2020.125481Kim, H.I., Han, K.Y., and Lee, J.Y. (2020). "Prediction of urban flood extent by LSTM model and logistic regression." Journal of Civil and Environmental Engineering Research, KSCE, Vol. 40, No. 3, pp. 273-283.
Kim, H.I., Keum, H.J., and Han, K.Y. (2019). "Real-time urban inundation prediction combining hydraulic and probabilistic methods." Water, MDPI, Vol. 11, No. 2, 293.
10.3390/w11020293Latt, Z.Z., and Wittenberg, H. (2014). "Improving flood forecasting in a developing country: A comparative study of stepwise multiple linear regression and artificial neural network." Water Resource Manage, Vol. 28, pp. 2109-2128.
10.1007/s11269-014-0600-8Lee, S., Choi, H., Woo, H., Kim, M., Lee, E., Kim, S., and Noh, S.J. (2024). "Development and application of cellular automata- based urban inundation and water cycle model CAW." Journal of Korea Water Resources Association, KWRA, Vol. 57, No. 3, pp. 165-179.
Lee, S., Nakagawa, H., Kawaike, K., and Zhang, H. (2016). "Urban inundation simulation considering road network and building configurations." Journal of Flood Risk Management, Vol. 9, No. 3, pp. 224-233.
10.1111/jfr3.12165Liao, Y., Wang, Z., Chen, X., Lai, C. (2023). "Fast simulation and prediction of urban pluvial floods using a deep convolutional neural network model." Journal of Hydrology, Elsevier, Vol. 624, 129945.
10.1016/j.jhydrol.2023.129945Löwe, R., Böhm, J., Jensen, D.G., Leandro, J., and Rasmussen, S.H. (2021). "U-FLOOD - Topographic deep learning for predicting urban pluvial flood water depth." Journal of Hydrology, Elsevier, Vol. 603, 126898.
10.1016/j.jhydrol.2021.126898Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A., Klotz, D., Kratzert, F., Metzger, A., Nevo, S., Pappenberger, F., Prudhomme, C., Shalev, G., Shenzis, S., Tekalign, T.Y., Weitzner, D., Matias, Y. (2024). "Global prediction of extreme floods in ungauged watersheds." Nature, Vol. 627, pp. 559-563.
10.1038/s41586-024-07145-138509278PMC10954541News1 (N1) (2020). Busan hit by 90mm 'Water bomb' per hour: Floods and collapses widespread." accessed 24 July 2020, <https://www.news1.kr/local/busan-gyeongnam/4005486>.
Newsis (2023). Busan city establishes comprehensive manual for preventing river accidents. accessed 7 November 2023, <https://www.newsis.com/view/?id=NISX20231107_0002511761&pc_view=1>.
Noh, S.J., Lee, J.-H., Lee, S., and Seo, D.-J. (2019). "Retrospective dynamic inundation mapping of hurricane harvey flooding in the Houston Metropolitan Area using high-resolution modeling and high-performance computing." Water, MDPI, Vol. 11, No. 3, 597.
10.3390/w11030597Park, C.E. (2024). "Hourly water level simulation in Tancheon River using an LSTM." Journal of the Korean Society of Agricultural Engineers, KSAE, Vol. 66, No. 4, pp. 51-57.
Samantaray, S., Sahoo, A., and Agnihotri, A. (2023). "Prediction of flood discharge using Hybrid PSO-SVM algorithm in Barak River Basin." MethodsX, Vol. 10, 102060.
10.1016/j.mex.2023.10206036865648PMC9972406Schmid, F., and Leandro, J. (2023). "A feature-informed data-driven approach for predicting maximum flood inundation extends." Geosciences, MDPI, Vol. 13, No. 12, 384.
10.3390/geosciences13120384Seleem, O., Ayzel, G., Bronstert, A., and Heistermann, M. (2023). "Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany." Natural Hazards and Earth System Sciences, Vol. 23, No. 2, pp. 809-822.
10.5194/nhess-23-809-2023Seoul Metropolitan Government (SMG) (2023). Seoul implements the nation's first flood warning system 'Companion partners' support evacuation for the vulnerable. accessed 10 March 2023, < https://news.seoul.go.kr/env/archives/522983>.
Son, T.S., Kang,D.H., Jang,J.K and Shin, H.S. (2010). "A study of assessment for internal inundation vulnerability in urban area using SWMM." Journal of The Korean Society of Hazard Mitigation, KOSHAM, Vol. 10, No. 4, pp. 105-117.
The Kukmin Daily (TKD) (2014). Busan woke up to a 'Mud field'... Is it a 'Special disaster area'?, accessed 12 August 2024, <https://www.kmib.co.kr/article/view.asp?arcid=0008622104>.
Tsakiri, K., Marsellos, A., and Kapetanakis, S. (2018). "Artificial neural network and multiple linear regression for flood prediction in Mohawk River, New York." Water, MDPI, Vol.10, 1158.
10.3390/w10091158Wang, Y., Chen, A.S., Fu, G., Djordjević, S., Zhang, C., and Savić, D.A. (2018). "An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features." Environmental Modelling & Software, Vol. 107, pp. 85-95.
10.1016/j.envsoft.2018.06.010Wei, C.-C. (2020). "Comparison of River basin water level forecasting methods: Sequential neural networks and multiple- input functional neural networks." Remote Sensing, MDPI, Vol. 12, 4172.
10.3390/rs12244172Wing, O.E.J., Bates, P.D., Sampson, C.C., Smith, A.M., Johnson, K.A., and Erickson, T.A. (2017). "Validation of a 30 m resolution flood hazard model of the conterminous United States." Water Resources Research, Vol. 53, No. 9, pp. 7968-7986.
10.1002/2017WR020917Xu, L., and Gao, L. (2024). "A hybrid surrogate model for real-time coastal urban flood prediction: An application to Macao." Journal of Hydrology, Elsevier, Vol. 642, 131863.
10.1016/j.jhydrol.2024.131863Yamashita, R., Nishio, M., Do, R.K.G., and Togashi, K. (2018). "Convolutional neural networks: An overview and application in radiology." Insights Into Imaging, Vol. 9, No. 4, pp. 611-629.
10.1007/s13244-018-0639-929934920PMC6108980Yonhap News Agency (YNA) (2014). Heavy rain of 130 mm per hour in Busan... Landslides and flood damage occurring one after another, accessed 12 August 2024, <https://www.yna.co.kr/view/AKR20140825155800051>.
Zhang, L., Qin, H., Mao, J., Cao, X., and Fu, G. (2023). "High temporal resolution urban flood prediction using attention-based LSTM models." Journal of Hydrology, Vol. 620, 129499.
10.1016/j.jhydrol.2023.129499Zhou, Q., Teng, S., Situ, Z., Liao, X., Feng, J., Chen, G., Zhang, J., and Lu, Z. (2023). "A deep-learning-technique-based data- driven model for accurate and rapid flood predictions in temporal and spatial dimensions." Hydrology and Earth System Sciences, Vol. 27, No. 9, pp. 1791-1808.
10.5194/hess-27-1791-2023- Publisher :KOREA WATER RESOURECES ASSOCIATION
- Publisher(Ko) :한국수자원학회
- Journal Title :Journal of Korea Water Resources Association
- Journal Title(Ko) :한국수자원학회 논문집
- Volume : 57
- No :12
- Pages :989-1001
- Received Date : 2024-08-23
- Revised Date : 2024-10-18
- Accepted Date : 2024-11-07
- DOI :https://doi.org/10.3741/JKWRA.2024.57.12.989