All Issue

2024 Vol.57, Issue 10 Preview Page

Research Article

31 October 2024. pp. 673-686
Abstract
References
1

Adamowski, J., and Chan, H.F. (2011). "A wavelet neural network conjunction model for groundwater level forecasting." Journal of Hydrology, Vol. 407, No. 1-4, pp. 28-40.

10.1016/j.jhydrol.2011.06.013
2

Alizamir, M., Kisi, O., and Zounemat-Kermani, M. (2018). "Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data." Hydrological Sciences Journal, Vol. 63, No. 1, pp. 63-73.

10.1080/02626667.2017.1410891
3

Barthel, R., and Banzhaf, S. (2016). "Groundwater and surface water interaction at the regional-scale - a review with focus on regional integrated models." Water Resources Management, Vol. 30, No. 1, pp. 1-32.

10.1007/s11269-015-1163-z
4

Bengio, Y., Simard, P., and Frasconi, P. (1994). "Learning long-term dependencies with gradient descent is difficult." IEEE Transactions on Neural Networks, Vol. 5, No. 2, pp. 157-166.

10.1109/72.27918118267787
5

Bizhanimanzar, M., Leconte, R., and Nuth, M. (2019). "Modelling of shallow water table dynamics using conceptual and physically based integrated surface-water - groundwater hydrologic models." Hydrology and Earth System Sciences, Vol. 23, No. 5, pp. 2245-2260.

10.5194/hess-23-2245-2019
6

Chollet, F., and Allaire, J.J. (2018). Deep learning with R. Manning Publications, Shelter Island, NY, U.S., p. 360.

7

Davoudi Moghaddam, D., Rahmati, O., Haghizadeh, A., and Kalantari, Z. (2020). "A modeling comparison of groundwater potential mapping in a mountain bedrock aquifer: QUEST, GARP, and RF models." Water, Vol. 12, No. 3, 679.

10.3390/w12030679
8

Falbel, D., Allaire, J.J., Chollet, F., Tang, Y., Van Der Bijl, W., Studer, M., Keydana, S. (2019). R Interface to 'Keras'. R Package Version 2.2.4.1, accessed 5 April 2019, <https://CRAN.R-project.org/package=keras>.

9

Fallah-Mehdipour, E., Haddad, O.B., and Mariño, M.A. (2013). "Prediction and simulation of monthly groundwater levels by genetic programming." Journal of Hydro-Environment Research, Vol. 7, No. 4, pp. 253-260.

10.1016/j.jher.2013.03.005
10

Gharehbaghi, A., Ghasemlounia, R., Ahmadi, F., and Albaji, M. (2022). "Groundwater level prediction with meteorologically sensitive Gated Recurrent Unit (GRU) neural networks." Journal of Hydrology, Vol. 612, 128262.

10.1016/j.jhydrol.2022.128262
11

Gholizadeh, H., Zhang, Y., Frame, J., Gu, X., and Green, C.T. (2023). "Long short-term memory models to quantify long-term evolution of streamflow discharge and groundwater depth in Alabama." Science of the Total Environment, Vol. 901, 165884.

10.1016/j.scitotenv.2023.16588437517717
12

Gong, Y., Zhang, Y., Lan, S., and Wang, H. (2016). "A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida." Water Resources Management, Vol. 30, pp. 375-391.

10.1007/s11269-015-1167-8
13

Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., and Seung, H.S. (2000). "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit." Nature, Vol. 405, No. 6789, pp. 947-951.

10.1038/3501607210879535
14

Haykin, S. (2009). Neural networks and learning machines, Pearson Prentice Hall, Upper Saddle River, NJ, U.S.

15

Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780.

10.1162/neco.1997.9.8.17359377276
16

Jeihouni, E., Mohammadi, M., Eslamian, S., and Zareian, M.J. (2019). "Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study - Shabestar Plain, Iran." Environmental Monitoring and Assessment, Vol. 191, No. 10, 620.

10.1007/s10661-019-7784-631493149
17

Jeju Special Self-Governing Province (JSSGP) (2022). Basic plan for integrated water management for Jeju Special Self-Governing Province. pp. 1-485.

18

Jha, M.K., and Sahoo, S. (2014). "Efficacy of neural network and genetic algorithm techniques in simulating spatio‐temporal fluctuations of groundwater." Hydrological Processes, Vol. 29, No. 5, pp. 671-691.

10.1002/hyp.10166
19

Kim, D., Jang, C., Choi, J., and Kwak, J. (2023). "A case study: Groundwater level forecasting of the gyorae area in actual practice on jeju island using deep-learning technique." Water, Vol. 15, No. 5, 972.

10.3390/w15050972
20

Kim, I., and Lee, J. (2022). "Performance analysis of ANN prediction for groundwater level considering regional- specific influence components." Groundwater, Vol. 60, No. 3, pp. 344-361.

10.1111/gwat.1315634873680
21

Kim, T.W., and Valdés, J.B. (2003). "Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks." Journal of Hydrologic Engineering, Vol. 8, No. 6, pp. 319-328.

10.1061/(ASCE)1084-0699(2003)8:6(319)
22

Kingma, D.P., and Ba, J. (2014). "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980.

23

Kow, P.Y., Liou, J.Y., Sun, W., Chang, L.C., and Chang, F.J. (2024). "Watershed groundwater level multistep ahead forecasts by fusing convolutional-based autoencoder and LSTM models." Journal of Environmental Management, Vol. 351, 119789.

10.1016/j.jenvman.2023.11978938100860
24

Lallahem, S., Mania, J., Hani, A., and Najjar, Y. (2005). "On the use of neural networks to evaluate groundwater levels in fractured media." Journal of Hydrology, Vol. 307, No. 1-4, pp. 92-111.

10.1016/j.jhydrol.2004.10.005
25

Le, X.H., Ho, H.V., Lee, G., and Jung, S. (2019). "Application of long short-term memory (LSTM) neural network for flood forecasting." Water, Vol. 11, No. 7, 1387.

10.3390/w11071387
26

Maier, H.R., and Dandy, G.C. (2000). "Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications." Environmental Modelling & Software, Vol. 15, No. 1, pp. 101-124.

10.1016/S1364-8152(99)00007-9
27

McDonald, M.G., and Harbaugh, A.W. (1988). A modular three-dimensional finite-difference ground-water flow model. Vol. 6. US Geological Survey, Reston, VA, U.S.

28

Mirarabi, A., Nassery, H.R., Nakhaei, M., Adamowski, J., Akbarzadeh, A.H., and Alijani, F. (2019). "Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems." Environmental Earth Sciences, Vol. 78, No. 15, pp. 1-15.

10.1007/s12665-019-8474-y
29

Mohanty, S., Jha, M.K., Kumar, A., and Panda, D.K. (2013). "Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi - Surua Inter-basin of Odisha, India." Journal of Hydrology, Vol. 495, pp. 38-51.

10.1016/j.jhydrol.2013.04.041
30

Mohanty, S., Jha, M.K., Kumar, A., and Sudheer, K.P. (2010). "Artificial neural network modeling for groundwater level forecasting in a river island of eastern India." Water Resources Management, Vol. 24, pp. 1845-1865.

10.1007/s11269-009-9527-x
31

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900.

10.13031/2013.23153
32

Müller, J., Park, J., Sahu, R., Varadharajan, C., Arora, B., Faybishenko, B., and Agarwal, D. (2021). "Surrogate optimization of deep neural networks for groundwater predictions." Journal of Global Optimization, Vol. 81, No. 1, pp. 203-231.

10.1007/s10898-020-00912-0
33

Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290.

10.1016/0022-1694(70)90255-6
34

Payne, K., Chami, P., Odle, I., Yawson, D.O., Paul, J., Maharaj-Jagdip, A., and Cashman, A. (2022). "Machine learning for surrogate groundwater modelling of a small carbonate island." Hydrology, Vol. 10, No. 1, 2.

10.3390/hydrology10010002
35

Prechelt, L. (2012) "Early stopping - but when?" Neural networks: tricks of the trade, Edited by Montavon, G., Orr, G.B., and Müller, KR., Springer, Heidelberg, Germany, pp. 53-67.

10.1007/978-3-642-35289-8_5
36

Rajaee, T., Ebrahimi, H., and Nourani, V. (2019). "A review of the artificial intelligence methods in groundwater level modeling." Journal of Hydrology, Vol. 572, pp. 336-351.

10.1016/j.jhydrol.2018.12.037
37

Rakhshandehroo, G.R., Vaghefi, M., and Aghbolaghi, M.A. (2012). "Forecasting groundwater level in Shiraz plain using artificial neural networks." Arabian Journal for Science and Engineering, Vol. 37, No. 7, pp. 1871-1883.

10.1007/s13369-012-0291-5
38

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). "Learning representations by back-propagating errors." Nature, Vol. 323, No. 6088, pp. 533-536.

10.1038/323533a0
39

Sahoo, S., Russo, T.A., Elliott, J., and Foster, I. (2017). "Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US." Water Resources Research, Vol. 53, No. 5, pp. 3878-3895.

10.1002/2016WR019933
40

Seidu, J., Ewusi, A., Kuma, J.S.Y., Ziggah, Y.Y., and Voigt, H.J. (2023). "Impact of data partitioning in groundwater level prediction using artificial neural network for multiple wells." International Journal of River Basin Management, Vol. 21, No. 4, pp. 639-650.

10.1080/15715124.2022.2079653
41

Seifi, A., Ehteram, M., Singh, V.P., and Mosavi, A. (2020). "Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN." Sustainability, Vol. 12, No. 10, 4023.

10.3390/su12104023
42

Shin, M.J., Kim, J.W., Moon, D.C., Lee, J.H., and Kang, K.G. (2021). "Comparative analysis of activation functions of artificial neural network for prediction of optimal groundwater level in the middle mountainous area of Pyoseon watershed in Jeju Island." Journal of Korea Water Resources Association, Vol. 54, No. 12, pp. 1143-1154.

43

Shin, M.J., Moon, S.H., Kang, K.G., Moon, D.C., and Koh, H.J. (2020). "Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network." Hydrology, Vol. 7, No. 3, 64.

10.3390/hydrology7030064
44

Sit, M., Demiray, B.Z., Xiang, Z., Ewing, G.J., Sermet, Y., and Demir, I. (2020). "A comprehensive review of deep learning applications in hydrology and water resources." Water Science and Technology, Vol. 82, No. 12, pp. 2635-2670.

10.2166/wst.2020.36933341760
45

Sun, J., Hu, L., Li, D., Sun, K., and Yang, Z. (2022). "Data-driven models for accurate groundwater level prediction and their practical significance in groundwater management." Journal of Hydrology, Vol. 608, 127630.

10.1016/j.jhydrol.2022.127630
46

Sun, Y., Wendi, D., Kim, D.E., and Liong, S.Y. (2016). "Application of artificial neural networks in groundwater table forecasting - a case study in a Singapore swamp forest." Hydrology and Earth System Sciences, Vol. 20, No. 4. pp. 1405-1412.

10.5194/hess-20-1405-2016
47

Tao, H., Hameed, M.M., Marhoon, H.A., Zounemat-Kermani, M., Heddam, S., Kim, S., Sulaiman, S.O., Tan, M.L., Sa'adi, Z., Mehr, A.D., Allawi, M.F., Abba, S.I., Zain, J.M., Falah, M.W., Jamei, M., Bokde, N.D., Bayatvarkeshi, M., Al-Mukhtar, M., Bhagat, S.K., Tiyasha, T., Yaseen, Z.M. (2022). "Groundwater level prediction using machine learning models: A comprehensive review." Neurocomputing, Vol. 489, pp. 271-308.

10.1016/j.neucom.2022.03.014
48

Yin, J., Medellín-Azuara, J., Escriva-Bou, A., and Liu, Z. (2021). "Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change." Science of The Total Environment, Vol. 769, 144715.

10.1016/j.scitotenv.2020.14471533736244
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 57
  • No :10
  • Pages :673-686
  • Received Date : 2024-08-14
  • Revised Date : 2024-09-20
  • Accepted Date : 2024-09-23