All Issue

2024 Vol.57, Issue 7

Research Article

31 July 2024. pp. 437-449
Abstract
References
1

Addor, N., Newman, A.J., Mizukami, N., and Clark, M.P. (2017). "The CAMELS data set: Catchment attributes and meteorology for large-sample studies." Hydrology and Earth System Sciences, Vol. 21, No. 10, pp. 5293-5313.

10.5194/hess-21-5293-2017
2

Beck, H.E., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A.I., Weedon, G.P., Brocca, L., Pappenberger, F., Huffman, G.J., and Wood, E.F. (2017). "Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling." Hydrology and Earth System Sciences, Vol. 21, No. 12, pp. 6201-6217.

10.5194/hess-21-6201-2017
3

Blöschl, G., and Sivapalan, M. (1995). "Scale issues in hydrological modelling: A review." Hydrological Processes, Vol. 9, No. 3-4, pp. 251-290.

10.1002/hyp.3360090305
4

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., and Askell, A. (2020). "Language models are few-shot learners." Advances in Neural Information Processing Systems, Vol. 33, pp. 1877-1901.

5

Brunner, M.I., Slater, L., Tallaksen, L.M., and Clark, M. (2021). "Challenges in modeling and predicting floods and droughts: A review" Wiley Interdisciplinary Reviews: Water, Vol. 8, No. 3, e1520.

10.1002/wat2.1520
6

Chen, C., Hui, Q., Xie, W., Wan, S., Zhou, Y., and Pei, Q. (2021). "Convolutional Neural Networks for forecasting flood process in Internet-of-Things enabled smart city." Computer Networks, Vol. 186, 107744.

10.1016/j.comnet.2020.107744
7

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint, arXiv:1810.04805.

8

Ding, Y., Zhu, Y., Feng, J., Zhang, P., and Cheng, Z. (2020). "Interpretable spatio-temporal attention LSTM model for flood forecasting." Neurocomputing, Vol. 403, pp. 348-359.

10.1016/j.neucom.2020.04.110
9

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2020). "An image is worth 16x16 words: Transformers for image recognition at scale" arXiv preprint, arXiv:2010.11929.

10

Fang, K., Kifer, D., Lawson, K., Feng, D., and Shen, C. (2022). "The data synergy effects of time‐series deep learning models in hydrology." Water Resources Research, Vol. 58, No. 4, e2021WR029583.

10.1029/2021WR029583
11

Gao, S., Zhang, S., Huang, Y., Han, J., Luo, H., Zhang, Y., and Wang, G. (2022). "A new seq2seq architecture for hourly runoff prediction using historical rainfall and runoff as input." Journal of Hydrology, Vol. 612, 128099.

10.1016/j.jhydrol.2022.128099
12

Gupta, H., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V. (2014). "Large-sample hydrology: A need to balance depth with breadth." Hydrology and Earth System Sciences, Vol. 18, No. 2, pp. 463-477.

10.5194/hess-18-463-2014
13

Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). "Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling." Journal of Hydrology, Vol. 377, No. 1-2, pp. 80-91.

10.1016/j.jhydrol.2009.08.003
14

Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780.

10.1162/neco.1997.9.8.17359377276
15

Jeong, J., and Park, E. (2019). "Comparative applications of data-driven models representing water table fluctuations." Journal of Hydrology, Vol. 572, pp. 261-273.

10.1016/j.jhydrol.2019.02.051
16

Jun, H., and Lee, J. (2013). "A methodology for flood forecasting and warning based on the characteristic of observed water levels between upstream and downstream." Journal of the Korean Society of Hazard Mitigation, Vol. 13, No. 6, pp. 367-374.

10.9798/KOSHAM.2013.13.6.367
17

Jung, J., Mo, H., Lee, J., Yoo, Y., and Kim, H.S. (2021). "Flood stage forecasting at the Gurye-Gyo station in Sumjin River Using LSTM-based deep learning models." Journal of the Korean Society of Hazard Mitigation, Vol. 21, No. 3, pp. 193-201.

10.9798/KOSHAM.2021.21.3.193
18

Jung, S., Lee, D., and Lee, K. (2018). "Prediction of river water level using deep-learning open library." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 1, pp. 1-11.

10.9798/KOSHAM.2018.18.1.1
19

Kao, I.-F., Zhou, Y., Chang, L.-C., and Chang, F.-J. (2020). "Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting." Journal of Hydrology, Vol. 583, 124631.

10.1016/j.jhydrol.2020.124631
20

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M. (2018). "Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks." Hydrology and Earth System Sciences, Vol. 22, No. 11, pp. 6005-6022.

10.5194/hess-22-6005-2018
21

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G. (2019). "Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets." Hydrology and Earth System Sciences, Vol. 23, No. 12, pp. 5089-5110.

10.5194/hess-23-5089-2019
22

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., and Nevo, S. (2023). "Caravan-A global community dataset for large-sample hydrology." Scientific Data, Vol. 10, No. 1, 61.

10.1038/s41597-023-01975-w36717577PMC9887008
23

LeCun, Y., Bengio, Y., and Hinton, G. (2015). "Deep learning." Nature, Vol. 521, No. 7553, pp. 436-444.

10.1038/nature1453926017442
24

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF International Conference on Computer Vision, Microsoft Research Asia, pp. 10012-10022.

10.1109/ICCV48922.2021.00986
25

Mok, J.-Y., Choi, J.-H., and Moon, Y.-I. (2020). "Prediction of multipurpose dam inflow using deep learning." Journal of Korea Water Resources Association, Vol. 53, No. 2, pp. 97-105.

26

Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290.

10.1016/0022-1694(70)90255-6
27

Nearing, G.S., Kratzert, F., Sampson, A.K., Pelissier, C.S., Klotz, D., Frame, J.M., Prieto, C., and Gupta, H.V. (2021). "What role does hydrological science play in the age of machine learning?" Water Resources Research, Vol. 57, No. 3, e2020WR028091.

10.1029/2020WR028091
28

Newman, A.J., Clark, M.P., Sampson, K., Wood, A., Hay, L.E., Bock, A., Viger, R.J., Blodgett, D., Brekke, L., and Arnold, J. (2015). "Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance" Hydrology and Earth System Sciences, Vol. 19, No. 1, pp. 209-223.

10.5194/hess-19-209-2015
29

Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N. (2008). "Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments." Water Resources Research, Vol. 44, No. 3, W03413.

10.1029/2007WR006240
30

Razavi, T., and Coulibaly, P. (2013). "Streamflow prediction in ungauged basins: review of regionalization methods" Journal of Hydrologic Engineering, Vol. 18, No. 8, pp. 958-975.

10.1061/(ASCE)HE.1943-5584.0000690
31

Schmidhuber, J. (2015). "Deep learning in neural networks: An overview" Neural Networks, Vol. 61, pp. 85-117.

10.1016/j.neunet.2014.09.00325462637
32

Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., Ganguly, S., Hsu, K.-L., Kifer, D., and Fang, Z. (2018). "HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community." Hydrology and Earth System Sciences, Vol. 22, No. 11, pp. 5639-5656.

10.5194/hess-22-5639-2018
33

Sivapalan, M., Takeuchi, K., Franks, S.W., Gupta, V.K., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J.J., Mendiondo, E.M., O'Connell, P.E., Oki, T., Pomeroy, J.W., Schertzer, D., Uhlenbrook, S., and Zehe, E. (2003). "IAHS Decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences." Hydrological Sciences Journal, Vol. 48, No. 6, pp. 857-880.

10.1623/hysj.48.6.857.51421
34

Tuli, S., Casale, G., and Jennings, N.R. (2022). "Tranad: Deep transformer networks for anomaly detection in multivariate time series data." arXiv preprint, arXiv:2201.07284.

10.14778/3514061.3514067
35

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017). "Attention is all you need." Advances in Neural Information Processing Systems, Vol. 30, Long Beach, CA, U.S.

36

Wen, Q., He, K., Sun, L., Zhang, Y., Ke, M., and Xu, H. (2021). "RobustPeriod: Robust time-frequency mining for multiple periodicity detection." Proceedings of the 2021 International Conference on Management of Data, China, pp. 2328-2337.

10.1145/3448016.3452779
37

Wu, H., Xu, J., Wang, J., and Long, M. (2021). "Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting." Advances in Neural Information Processing Systems, Vol. 34, pp. 22419-22430.

38

Xu, J., Wu, H., Wang, J., and Long, M. (2021). "Anomaly transformer: Time series anomaly detection with association discrepancy" arXiv preprint, arXiv:2110.02642.

39

Xu, Y., Lin, K., Hu, C., Wang, S., Wu, Q., Zhang, L., and Ran, G. (2023). "Deep transfer learning based on transformer for flood forecasting in data-sparse basins." Journal of Hydrology, Vol. 625, 129956.

10.1016/j.jhydrol.2023.129956
40

Yang, C.-H.H., Tsai, Y.-Y., and Chen, P.-Y. (2021). "Voice2series: Reprogramming acoustic models for time series classification." International Conference on Machine Learning, PMLR, pp. 11808-11819.

41

Yin, H., Guo, Z., Zhang, X., Chen, J., and Zhang, Y. (2022). "RR-Former: Rainfall-runoff modeling based on Transformer." Journal of Hydrology, Vol. 609, 127781.

10.1016/j.jhydrol.2022.127781
42

Yin, H., Zhang, X., Wang, F., Zhang, Y., Xia, R., and Jin, J. (2021). "Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model." Journal of Hydrology, Vol. 598, 126378.

10.1016/j.jhydrol.2021.126378
43

Yin, H., Zhu, W., Zhang, X., Xing, Y., Xia, R., Liu, J., and Zhang, Y. (2023). "Runoff predictions in new-gauged basins using two transformer-based models" Journal of Hydrology, Vol. 622, 129684.

10.1016/j.jhydrol.2023.129684
44

Zhang, Y., Chiew, F. H., Li, M., and Post, D. (2018). "Predicting runoff signatures using regression and hydrological modeling approaches." Water Resources Research, Vol. 54, No. 10, pp. 7859-7878.

10.1029/2018WR023325
45

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., and Zhang, W. (2021). "Informer: Beyond efficient transformer for long sequence time-series forecasting." Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, Canada, Vol. 35, No. 12, pp. 11106-11115.

10.1609/aaai.v35i12.17325
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 57
  • No :7
  • Pages :437-449
  • Received Date : 2024-04-17
  • Revised Date : 2024-06-11
  • Accepted Date : 2024-06-12