All Issue

2021 Vol.54, Issue 12S Preview Page

Research Article

31 December 2021. pp. 1053-1060
Abstract
References
1
Bae, H.K. (2007). Modeling approaches to predict conditions of water quality using physical, chemical, and hydrological data focused on biological contaminations. Ph.D. dissertation, University of California, Irvine, CA, U.S., p.102.
2
Boehm, A.B., Grant, S.B., Kim, J.H., Mowbray, S.L., McGee, C.D., Clark, C.D., Foley, D.M., and Wellman, D.E. (2002). "Decadal and shorter period variability of surf zone water quality at Huntington Beach, California." Environment Science and Technology, ACS Publications, Vol. 36, No. 18, pp. 3885-3892. 10.1021/es020524u12269739
3
Boudaghpour, S., Moghadam, H.S.A., Hajbabaie, M., Toliati, S.H. (2019). "Estimating chlorophyll-A concentration in the Caspian Sea from MODIS images using artificial neural networks." Environmental Engineering Research, KSEE, Vol. 25, No. 4, pp. 515-521. 10.4491/eer.2019.106
4
Corrigan, J.A., Butkus, S.R., Ferris, M.E., and Roberts, J.C. (2021). "Microbial source tracking approach to investigate fecal waste at the Strawberry Creek watershed and Clam Beach, California, USA." International Journal of Environmental Research and Public Health, Vol. 18, No. 13, p. 6901. 10.3390/ijerph1813690134199071PMC8297226
5
French, C.B. (2003). Modeling Nitrogen transport in the Newport Bay/San Diego Creek watershed. Master Thesis, University of California Riverside, RIversidem, CA, U.S., pp. 24-25.
6
Hsu, K.-L. Gupta, H.V., Gao, X., Sorooshian, S., and Imam, B. (2002). "Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis". Water Resources Research. Vol. 38, No. 12, pp. 1-17. 10.1029/2001WR000795
7
Kamer, K., Schiff, K., Kennison, R.L., and Fong P. (2002). Macroalgal nutrient dynamics in upper Newport Bay. Technical Report, Southern California Coastal Water Research Project, CA, U.S., p. 33. 10.2175/193864702785072768
8
Natural Resources Defense Council (NRDC) (2021). U.S., accessed 15 September 2021, <http://www.nrdc.org/water/oceans>.
9
Oftelie, S., Saltzstein, A., Gianos, P., Boyum, K., Rocke, R., and Mosallem, A. (2000). Infrastructure: Latest survey finds orange county voters broadly similar to national survey respondents on the priority of cleaning up coastal waters. Technical Report, The Orange County Business Council, CA, U.S., p. 73.
10
Reeves, R.L., Grant, S.B., Mrse, R.D., Copil-Oancea, C.M., Sanders, B.F., and Boehm, A.B. (2004). "Scaling and management of fecal indicator bacteria in runoff from a Coastal Urban Watershed in Southern California." Environment Science and Technology, ACS Publications, Vol. 38, No. 9, pp. 2637-2648. 10.1021/es034797g15180060
11
Searcy, R.T., and Boehm, A.B. (2021). "A Day at the beach: Enabling Coastal water quality prediction with high-frequency sampling and data-driven models." Environment Science and Technology, ACS Publications, Vol. 55, No. 3, pp. 1908-1918. 10.1021/acs.est.0c0674233471505
12
State Water Resources Control Board, California Environmental Protection Agency (SWRCB) (2001). Source investigations of storm drain discharges causing exceedances of bacteriological standards. U.S., p. 17.
13
Strauss, A. (2002). Total maximum daily loads for toxic pollutants San Diego Creek and Newport Bay, California, U.S. Environmental Protection Agency Region 9, Washington DC, U.S., pp. 37
14
Surfrider Foundation (2021). U.S., accessed 22 September 2021, <http://www.surfrider.org/>.
15
U.S. Envrionment Protection Agency (U.S. EPA) (2021). U.S., accessed 7 September 2021, <https://www.epa.gov/aboutepa/epa-region-9-pacific-southwes>.
16
U.S. Fish & Wildlife Service (USFW) (2021). U.S., accessed 13 September 2021, <http://www.fws.gov/>.
17
Vijayashanthar, V., Qiao, J., Zhu, Q., Entwistle, P., and Yu, G. (2018). "Modeling fecal indicator bacteria in urban waterways using artificial neural networks." Journal of Environmental Engineering, ASCE, Vol. 144, No. 6, doi: 10.1061/(ASCE)EE.1943-7870.0001377. 10.1061/(ASCE)EE.1943-7870.0001377
18
Xu, T., Coco, G., and Neale, M. (2020). "A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning." Water Research, Elsevier, Vol. 177, No. 6, pp. 115788-115799.
19
Zhang, J., Qiu, H., Li, X., Niu, J., Nevers, M.B., Hu, X., and Phanikumar, M.S. (2018). "real-time nowcasting of microbiological water quality at recreational beaches: A wavelet and artificial neural network-based hybrid modeling approach." Environment Science and Technology, ACS Publications, Vol. 52, No. 15, pp. 8446-8455. 10.1021/acs.est.8b0102229957996
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 54
  • No :12
  • Pages :1053-1060
  • Received Date :2021. 09. 27
  • Revised Date :2021. 10. 15
  • Accepted Date : 2021. 10. 20