All Issue

2021 Vol.54, Issue 12S Preview Page

Research Article

31 December 2021. pp. 1037-1051
Ahmadi, A., Fatemi, Z., and Nazari, S. (2018). "Assessment of input data selection methods for BOD simulation using data-driven models: A case study." Environmental Monitoring and Assessment, Vol. 190, No. 4, p. 239. 10.1007/s10661-018-6608-429564564
Ahmadi, A., Nasseri, M., and Solomatine, D.P. (2019). "Parametric uncertainty assessment of hydrological models: coupling UNEEC-P and a fuzzy general regression neural network." Hydrological Sciences Journal, Vol. 64, No. 9, pp. 1080-1094. 10.1080/02626667.2019.1610565
Ahmed, A.A.M., and Shah, S.M.A. (2017). "Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River." Journal of King Saud University-Engineering Sciences, Vol. 29, No. 3, pp. 237-243. 10.1016/j.jksues.2015.02.001
Alizamir, M., Kim, S., Zounemat-Kermani, M., Heddam, S., Shahrabadi, A.H., and Gharabaghi, B. (2021). "Modelling daily soil temperature by hydro-meteorological data at different depths using a novel data-intelligence model: Deep echo state network model." Artificial Intelligence Review, Vol. 54, No. 4, pp. 2863-2890. 10.1007/s10462-020-09915-5
Ay, M., and Kisi, O. (2012). "Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado." Journal of Environmental Engineering, Vol. 138, No. 6, pp. 654-662. 10.1061/(ASCE)EE.1943-7870.0000511
Breiman, L. (2001). "Random forests." Machine Learning, Vol. 45, No. 1, pp. 5-32. 10.1023/A:1010933404324
Cho, K., Van Merriënboer, B., Bahdanau, and D., Bengio, Y. (2014). "On the properties of neural machine translation: Encoder-decoder approaches." arXiv preprint arXiv, 1409. 1259. doi: 10.3115/v1/W14-4012 10.3115/v1/W14-4012
Deo, R.C., Şahin, M., Adamowski, J.F., and Mi, J. (2019). "Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach." Renewable and Sustainable Energy Reviews, Vol. 104, pp. 235-261. 10.1016/j.rser.2019.01.009
Diamantopoulou, M.J., Antonopoulos, V.Z., and Papamichail, D.M. (2007). "Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers." Water Resources Management, Vol. 21, No. 3, pp. 649-662. 10.1007/s11269-006-9036-0
Dogan, E., Sengorur, B., and Koklu, R. (2009). "Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique." Journal of Environmental Management, Vol. 90, Issue 2, pp. 1229-1235. 10.1016/j.jenvman.2008.06.00418691805
Emamgholizadeh, S., Kashi, H., Marofpoor, I., and Zalaghi, E. (2014). "Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models." International Journal of Environmental Science and Technology, Vol. 11, No. 3, pp. 645-656. 10.1007/s13762-013-0378-x
Fallah, H., Kisi, O., Kim, S., and Rezaie-Balf, M. (2019). "A new optimization approach for the least-cost design of water distribution networks: Improved crow search algorithm." Water Resources Management, Vol. 33, No. 10, pp. 3595-3613. 10.1007/s11269-019-02322-8
Friedman, J.H. (2002). "Stochastic gradient boosting." Computational Statistics and Data Analysis, Vol. 38, No. 4, pp. 367-378. 10.1016/S0167-9473(01)00065-2
Garrick, M., Cunnane, C., and Nash, J.E. (1978). "A criterion of efficiency for rainfall-runoff models." Journal of Hydrology, Vol. 36, No. 3-4, pp. 375-381. 10.1016/0022-1694(78)90155-5
Granata, F., Papirio, S., Esposito, G., Gargano, R., and de Marinis, G. (2017). "Machine learning algorithms for the forecasting of wastewater quality indicators." Water, Vol. 9, No. 2, p. 105. 10.3390/w9020105
Jouanneau, S., Recoules, L., Durand, M.J., Boukabache, A., Picot, V., Primault, Y., Lakel, A., Sengelin, M., Barillon, B., and Thouand, G. (2014). "Methods for assessing biochemical oxygen demand (BOD): A review." Water Research, Vol. 49, pp. 62-82. 10.1016/j.watres.2013.10.06624316182
Kalteh, A.M. (2015). "Wavelet genetic algorithm-support vector regression (wavelet GA-SVR) for monthly flow forecasting." Water Resources Management, Vol. 29, No. 4, pp.1283-1293. 10.1007/s11269-014-0873-y
Khaled, B., Abdellah, A., Noureddine, D., Salim, H., and Sabeha, A. (2017). "Modelling of biochemical oxygen demand from limited water quality variable by ANFIS using two partition methods." Water Quality Research Journal of Canada, Vol. 53, No. 1, pp. 24-40. 10.2166/wqrj.2017.015
Kim, S. (2000). "The application of neural networks method for the flood discharge forecasting in the river basin." Journal of Korean Society of Civil Engineers, Vol. 20, No. 6-B, pp. 801-811 (in Korean).
Kim, S. (2011). "Nonlinear hydrologic modeling using the stochastic and neural networks approach." Disaster Advances, Vol. 4, No. 1, pp. 53-63.
Kim, S., Alizamir, M., Zounemat-Kermani, M., Kisi, O., and Singh, V.P. (2020). "Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea." Journal of Environmental Management, Vol. 270, p. 110834. 10.1016/j.jenvman.2020.11083432507742
Kim, S., and Kim, H.S. (2007). "Neural networks-genetic algorithm model for modeling of nonlinear evaporation and evapotranspiration time series 1. Theory and application of the model." Journal of Korean Water Resources Association, Vol. 40, No. 1, pp. 73-88. (in Korean) 10.3741/JKWRA.2007.40.1.073
Kim, S., and Kim, H.S. (2008). "Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling." Journal of Hydrology, Vol. 351, No. 3-4, pp. 299-317. 10.1016/j.jhydrol.2007.12.014
Kim, S., Kim, J.H., and Park, K.B. (2009). "Statistical learning theory for the disaggregation of the climatic data." Proceedings of the 33rd IAHR Congress, Vancouver, Canada, pp. 1154-1162.
Kim, S., Kisi, O., Seo, Y., Singh, V.P., and Lee, C.J. (2017). "Assessment of rainfall aggregation and disaggregation using data-driven models and wavelet decomposition." Hydrology Research, Vol. 48, No. 1, pp. 99-116. 10.2166/nh.2016.314
Kim, S., Maleki, N., Rezaie-Balf, M., Singh, V.P., Alizamir, M., Kim, N.W., Lee, J.T., and Kisi, O. (2021). "Assessment of the total organic carbon employing the different nature-inspired approaches in the Nakdong River, South Korea." Environmental Monitoring and Assessment, Vol. 193, No. 7, pp.1-22. 10.1007/s10661-021-08907-434173069
Kim, S., Park, K.B., and Seo, Y.M. (2012). "Estimation of pan evaporation using neural networks and climate-based models." Disaster Advances, Vol. 5, No. 3, pp. 34-43.
Kim, S., Seo, Y., and Lee, C.J. (2016). "Modeling of rainfall by combining neural computation and wavelet technique." Procedia Engineering, Vol. 154, pp. 1231-1236. 10.1016/j.proeng.2016.07.442
Kişi, Ö. (2006). "Generalized regression neural networks for evapotranspiration modelling." Hydrological Sciences Journal, Vol. 51, No. 6, pp. 1092-1105. 10.1623/hysj.51.6.1092
Ladlani, I., Houichi, L., Djemili, L., Heddam, S., and Belouz, K. (2012). "Modeling daily reference evapotranspiration (ETo) in the north of Algeria using generalized regression neural networks (GRNN) and radial basis function neural networks (RBFNN): A comparative study." Meteorology and Atmospheric Physics, Vol. 118, No. 3, pp. 163-178. 10.1007/s00703-012-0205-9
Li, J., Abdulmohsin, H.A., Hasan, S.S., Kaiming, L., Al-Khateeb, B., Ghareb, M.I., and Mohammed, M.N. (2019). "Hybrid soft computing approach for determining water quality indicator: Euphrates River." Neural Computing and Applications, Vol. 31, No. 3, pp. 827-837. 10.1007/s00521-017-3112-7
Li, X., Zecchin, A.C., and Maier, H.R. (2014). "Selection of smoothing parameter estimators for general regression neural networks - applications to hydrological and water resources modelling." Environmental Modelling and Software, Vol. 59, pp. 162-186. 10.1016/j.envsoft.2014.05.010
Mallat, S.G. (1989). "A theory of multiresolution signal decomposition: the wavelet representation." IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 3, pp. 674-693. 10.1109/34.192463
Ministry of Environment (ME) (2020). Full-scale implementation of the total water pollution control system in the 2030 phase of the Four Major Rivers (7.15). Press release.
Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models, Part 1 - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. 10.1016/0022-1694(70)90255-6
Noori, R., Yeh, H.D., Abbasi, M., Kachoosangi, F.T., and Moazami, S. (2015). "Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand." Journal of Hydrology, Vol. 527, pp. 833-843. 10.1016/j.jhydrol.2015.05.046
Percival, D.B., and Walden, A.T. (2000). Wavelet methods for time series analysis. Cambridge University Press, New York, NY, U.S. 10.1017/CBO9780511841040
Raheli, B., Aalami, M.T., El-Shafie, A., Ghorbani, M.A., and Deo, R.C. (2017). "Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: A case study of Langat River." Environmental Earth Sciences, Vol. 76, No. 14, p. 503. 10.1007/s12665-017-6842-z
Rezaie-Balf, M., Maleki, N., Kim, S., Ashrafian, A., Babaie-Miri, F., Kim, N.W., Chung, I.M., and Alaghmand, S. (2019). "Forecasting daily solar radiation using CEEMDAN decomposition-based MARS model trained by crow search algorithm." Energies, Vol. 12, No. 8, p. 1416. 10.3390/en12081416
Royal Commission on Sewage Disposal (1908). Fifth report on methods of treating and disposing of sewage. UK.
Sahay, R.R., and Srivastava, A. (2014). "Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network." Water Resources Management, Vol. 28, No. 2, pp. 301-317. 10.1007/s11269-013-0446-5
Seo, Y., and Kim, S. (2016). "Hydrological forecasting using hybrid data-driven approach." American Journal of Applied Sciences, Vol. 13, No. 8, pp.891-899. 10.3844/ajassp.2016.891.899
Seo, Y., Kim, S., and Singh, V.P. (2018). "Comparison of different heuristic and decomposition techniques for river stage modeling." Environmental Monitoring and Assessment, Vol. 190, No. 7, pp. 1-22. 10.1007/s10661-018-6768-229892912
Seo, Y., Kim, S., Kisi, O., and Singh, V.P. (2015). "Daily water level forecasting using wavelet decomposition and artificial intelligence techniques." Journal of Hydrology, Vol. 520, pp. 224-243. 10.1016/j.jhydrol.2014.11.050
Seo, Y., Kim, S., Kisi, O., Singh, V.P., and Parasuraman, K. (2016). "River stage forecasting using wavelet packet decomposition and machine learning models." Water Resources Management, Vol. 30, No. 11, pp. 4011-4035. 10.1007/s11269-016-1409-4
Simard, M., Saatchi, S.S., and De Grandi, G. (2000). "The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest." IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, pp. 2310-2321. 10.1109/36.868888
Solgi, A., Pourhaghi, A., Bahmani, R., and Zarei, H. (2017). "Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD)." Ecohydrology and Hydrobiology, Vol. 17, No. 2, pp.164-175. 10.1016/j.ecohyd.2017.02.002
Specht, D.F. (1991). "A general regression neural network." IEEE Transactions on Neural Networks, Vol. 2, No. 6, pp. 568-576. 10.1109/72.9793418282872
Tao, H., Bobaker, A.M., Ramal, M.M., Yaseen, Z.M., Hossain, M.S., and Shahid, S. (2019). "Determination of biochemical oxygen demand and dissolved oxygen for semi-arid river environment: application of soft computing models." Environmental Science and Pollution Research, Vol. 26, No. 1, pp. 923-937. 10.1007/s11356-018-3663-x30421367
Taylor, K.E. (2001). "Summarizing multiple aspects of model performance in a single diagram." Journal of Geophysical Research: Atmospheres, Vol. 106, No. D7, pp. 7183-7192. 10.1029/2000JD900719
Willmott, C.J., and Matsuura, K. (2005). "Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance." Climate Research, Vol. 30, No. 1, pp. 79-82. 10.3354/cr030079
Yang, G., Lee, H., and Lee, G. (2020). "A hybrid deep learning model to forecast particulate matter concentration levels in Seoul, South Korea." Atmosphere, Vol. 11, No. 4, p. 348. 10.3390/atmos11040348
Yaseen, Z.M., Karami, H., Ehteram, M., Mohd, N.S., Mousavi, S.F., Hin, L.S., Kisi, O., Farzin, S., Kim, S., and El-Shafie, A. (2018). "Optimization of reservoir operation using new hybrid algorithm." KSCE Journal of Civil Engineering, Vol. 22, No. 11, pp. 4668-4680. 10.1007/s12205-018-2095-y
Zakhrouf, M., Bouchelkia, H., Stamboul, M., and Kim, S. (2020). "Novel hybrid approaches based on evolutionary strategy for streamflow forecasting in the Chellif River, Algeria." Acta Geophysica, Vol. 68, No. 1, pp.167-180. 10.1007/s11600-019-00380-5
Zakhrouf, M., Bouchelkia, H., Stamboul, M., Kim, S., and Heddam, S. (2018). "Time series forecasting of river flow using an integrated approach of wavelet multi-resolution analysis and evolutionary data-driven models. A case study: Sebaou River (Algeria)." Physical Geography, Vol. 39, No. 6, pp. 506-522. 10.1080/02723646.2018.1429245
Zhang, Y., Pulliainen, J., Koponen, S., and Hallikainen, M. (2002). "Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data." Remote Sensing of Environment, Vol. 81, No. 2-3, pp. 327-336. 10.1016/S0034-4257(02)00009-3
Zou, R., Lung, W.S., and Wu, J. (2007). "An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling." Water Resources Research, Vol. 43, No. 8, W08427. 10.1029/2006WR005158
Zounemat-Kermani, M., Rajaee, T., Ramezani-Charmahineh, A., and Adamowski, J.F. (2017). "Estimating the aeration coefficient and air demand in bottom outlet conduits of dams using GEP and decision tree methods." Flow Measurement and Instrumentation, Vol. 54, pp. 9-19. 10.1016/j.flowmeasinst.2016.11.004
Zounemat-Kermani, M., Seo, Y., Kim, S., Ghorbani, M.A., Samadianfard, S., Naghshara, S., Kim, N.W., and Singh, V.P. (2019). "Can decomposition approaches always enhance soft computing models? Predicting the dissolved oxygen concentration in the St. Johns River, Florida." Applied Sciences, Vol. 9, No. 12, p. 2534. 10.3390/app9122534
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 54
  • No :12
  • Pages :1037-1051
  • Received Date :2021. 08. 18
  • Revised Date :2021. 09. 26
  • Accepted Date : 2021. 10. 06