All Issue

2021 Vol.54, Issue 12S

Research Article

31 December 2021. pp. 1023-1035
Abstract
References
1
Badruzzaman, M., Voutchkov, N., Weinrich, L., and Jacangelo, J.G. (2019). "Selection of pretreatment technologies for seawater reverse osmosis plants: A review." Desalination, Vol. 449, pp. 78-91. 10.1016/j.desal.2018.10.006
2
Bernat, X., Gibert, O., Guiu, R., Tobella, J., and Campos C. (2010). The economics of desalination for various uses. Re-thinking Water and Food Security: Fourth Botín Foundation Water Workshop, CRC Press, London, pp. 329-346.
3
Cho, H., Kim, D., Olivera, F., and Guikema, S.D. (2011). "Enhanced speciation in particles swarm optimization for multi-modal problems." European Journal of Operational Research, Vol. 213, No. 1, pp. 15-23. 10.1016/j.ejor.2011.02.026
4
Choi, H.M., Kim, M.K., and Yang, H. (2020). "High water temperature prediction using RNN-based LSTM." Proceedings of the Korea Institute of Information and Communication on Conference, KIISE, pp. 693-695.
5
Duda, R.O., Hart, P.E., and Stork, D.G. (2001). Pattern classification, Wiley-Interscience, New York, NY, U.S., pp. 3-11.
6
Fritzmann, C., Löwenberg, J., Wintgens, T., and Melin, T. (2007). "State of-the-art of reverse osmosis desalination." Desalination, Vol. 216, pp. 1-76. 10.1016/j.desal.2006.12.009
7
Global Water Intelligence (GWI) (2015). Desalination markets 2016. Oxford, UK., p. 93.
8
Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., and Moulin, P. (2009). "Reverse osmosis desalination: Water sources, technology, and today's challenges." Water Research, Vol. 43, No. 9, pp. 2317-2348. 10.1016/j.watres.2009.03.01019371922
9
Jeon, S.B, Oh, H.Y., and Jeong, M.H. (2020). "Estimation of sea water quality level using machine learning." Journal of Korean Society for Geospatial Information Science, Vol. 28, No. 4, pp. 145-152. 10.7319/kogsis.2020.28.4.145
10
Jeong, S., and Park, S. (2020). "Prediction of water temperature change using LSTM-based deep learning technology." Proceedings of the Korea Institute of Information and Communication on Women's ICT Conference, KIICE, pp. 42-43.
11
Jun, G.I., Kwon, D.H., and Ki, S.J. (2020). "Comparing the performance of machine learning algorithms in predicting river water quality and quantity." KSWST Journal of Water Treatment, Vol. 28, No. 1, pp. 49-57. 10.17640/KSWST.2020.28.1.49
12
Jung, S., Kim, Y.J., Park, S., and Im, J.H. (2020). "Prediction of sea surface temperature and detection of ocean heat wave in the South Sea of Korea using time-series deep-learning approaches." Korean Journal of Remote Sensing, Vol. 36, No. 5-3, pp. 1077-1093.
13
Kim, G.J., and Youm, K.H. (2019). "Design of dead-end membrane module with increased permeate flux by natural convection instability flow." Korean Membrane Journal, Vol. 29, No. 3, pp. 147-154. 10.14579/MEMBRANE_JOURNAL.2019.29.3.147
14
Kim, I.S., and Oh, B.S. (2008). "Technologies of seawater desalination and wastewater reuse for soving water shortage." Korean Society of Environmental Engineers, Vol. 30, No. 12, pp. 1197-1202.
15
Kim, Y.H., Im, J., Ha, H.K., Choi, J.K. and Ha, S. (2014). "Machine learning approaches to coastal water quality monitoring using GOCI satellite data." GIScience & Remote Sensing, Vol. 51, No. 2, pp. 158-174. 10.1080/15481603.2014.900983
16
Kurihara, M., and Takeuchi, H. (2013). "Mega-ton water system: Japanese national research and development project on seawater desalination and wastewater reclamation." Desalination, Vol. 308, pp. 131-137. 10.1016/j.desal.2012.07.038
17
K-water (2019). The feasibility and basic plan for SWRO project in Daesan industrial area (in Korean), pp. 6-80, 6-155, 6-179, 6-189, 6-192.
18
Kwon, B.S., Lee, S.H., Kang, S.T., and Lim, J.L. (2020). "Current research trends and the need for localization in ultrapure water production facilities in semiconductor industries." Korean Society of Environmental Engineers, Vol. 42, No. 10, pp. 493-512. 10.4491/KSEE.2020.42.10.493
19
Lee, G.O., and Park, J.Y. (2020). "A case study on utilization of industrial wastewater reuse." The Korean Society of Industry Convergence, Vol. 23, No. 1, pp. 17-24.
20
Lee, S.M., and Kim, I.K. (2021). "A comparative study on the application of boosting algorithm for Chl-a Estimation in the downstream of Nakdong River." Journal of Korean Society of Environmental Engineers, Vol. 43, No. 1, pp. 66-78. 10.4491/KSEE.2021.43.1.66
21
Mitchell, T.M. (1997). Machine learning. McGraw-Hill Science/Engineering/Math, New York, NY, U.S., pp. 81-108.
22
Oh, I.S. (2008). Pattern recognition. Kyobo, pp. 1-15, 95-132.
23
Park, J.S., and Lee, H.H. (2020). "Prediction of high turbidity in rivers using LSTM algorithm." Journal of Korean Society of Water and Wastewater, Vol. 34, No. 1, pp. 35-43. 10.11001/jksww.2020.34.1.035
24
Rosenblatt, F., Stieber, A., and Shatz, R.H. (1957). The perceptron a perceiving and recongnizing automaton, Report No. 85-460-1, Cornell Aeronautical Laboratory, Inc., New York, NY, U.S., pp. 1-2.
25
Suh, S.H., Kim, K.W., Kim, H.H., Yoon, I.S., and Cho, M.T. (2015). "Evaluation of energy saving with vector control inverter driving centrifugal pump system." KSFM Journal of Fluid Machinery, Vol. 18, No. 2, pp. 67-72. 10.5293/kfma.2015.18.2.067
26
Tariq, R. (2016). Make your own neural network, Createspace Independent Publishing Platform, CA, U.S., p. 43.
27
Voutchkov, N. (2010). Desalination engineering: Planning and design, McGraw-Hill, New York, , NY, U.S., pp. 17, 73, 115.
28
Voutchkov, N. (2018). "Energy use for membrane seawater desalination - current status and trends." Desalination, Vol. 431, pp. 2-14. 10.1016/j.desal.2017.10.033
29
Wikipedia (2021). Neuron, accessed 08 August 2021, <https://ko.wikipedia.org/wiki/%EC%8B%A0%EA%B2%BD_%EC%84%B8%ED%8F%AC>.
30
Woo, S.W., and Kim, Y.H. (2017). "Reduction of power consumption by variable speed operation of high pressure pump in seawater reverse osmosis desalination plant." KSFM Journal of Fluid Machinery, Vol. 20, No. 5, pp. 33-39. 10.5293/kfma.2017.20.5.033
31
Xiao, C., Chen, N., Hu, C., Wang, K., Xu, Z., Cai, Y., Xu, L., Chen, Z., and Gong, J. (2019). "A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data." Environmental Modelling & Software, Vol. 120, 104502 10.1016/j.envsoft.2019.104502
32
Yang, Y., Dong, J., Sun, X., Lima, E., Mu, Q., and Wang, X. (2017). "A CFCC-LSTM model for sea surface temperature prediction." IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 2, pp. 207-211. 10.1109/LGRS.2017.2780843
33
Zhang, Q., Wang, H., Dong, J., Zhong, G. and Sun, X. (2017). "Prediction of sea surface temperature using long short-term memory." IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 10, pp. 1745-1749. 10.1109/LGRS.2017.2733548
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 54
  • No :12
  • Pages :1023-1035
  • Received Date :2021. 08. 23
  • Revised Date :2021. 09. 23
  • Accepted Date : 2021. 09. 27