All Issue

2021 Vol.54, Issue 8 Preview Page

Research Article

31 August 2021. pp. 617-628
Abstract
References
1
Adam-Bourdarios, C., Cowan, G., Germain, C., Guyon, I., Kégl, B., and Rousseau, D. (2015). "The Higgs boson machine learning challenge." NIPS 2014 Workshop on High-energy Physics and Machine Learning, PMLR, Montreal, Canada, pp. 19-55.
2
Agrawala, M., and Stolte, C. (2001). "Rendering effective route maps: Improving usability through generalization." Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, Los Angeles, CA, U.S., pp. 241-249. 10.1145/383259.383286
3
Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, Italy.
4
Asoka, A., and Mishra, V. (2015). "Prediction of vegetation anomalies to improve food security and water management in India." Geophysical Research Letters, Vol. 42, No. 13, pp. 5290-5298. 10.1002/2015GL063991
5
Bergstra, J., Yamins, D., and Cox, D. (2013). "Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms." Proceedings of the 12th Python in Science Conference, SciPy, Austin, TX, U.S., Vol. 13, p. 20. 10.25080/Majora-8b375195-003
6
Breiman, L. (2001). "Random forests." Machine Learning, Vol. 45, No. 1, pp. 5-32. 10.1023/A:1010933404324
7
Carmona, P., Climent, F., and Momparler, A. (2018). "Predicting failure in the U.S. banking sector: An extreme gradient boosting approach." International Review of Economics & Finance, Vol. 61, pp. 304-323. 10.1016/j.iref.2018.03.008
8
Chen, T., and Guestrin, C. (2016). "XGBoost: A scalable tree boosting system." 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, San Francisco, CA, U.S. 10.1145/2939672.2939785
9
Dikshit, A., Pradhan, B., and Alamri, A. (2021). "Long lead time drought forecasting using lagged climate variables and a stacked long short-term memory model." Science of The Total Environment, Vol. 755, 142638. 10.1016/j.scitotenv.2020.14263833049536
10
Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., and Xiang, Y. (2018). "Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China." Energy Convertsion and Management, Vol. 164, pp. 102-111. 10.1016/j.enconman.2018.02.087
11
Fawcett, T. (2006). "An introduction to ROC analysis." Pattern Recognition Letters, Vol. 27, No. 8, pp. 861-874. 10.1016/j.patrec.2005.10.010
12
Friedman, J. (2001). "Greedy function approximation: A gradient boosting machine." Annals of Statistics, Vol. 29, No. 5, pp. 1189-1232. 10.1214/aos/1013203451
13
Hestness, J., Narang, S., Ardalani, N., Diamos, G.F., Jun, H., Kianinejad, H., Patwary, M.M.A., Yang, Y., and Zhou, Y. (2017) Deep learning scaling is predictable, empirically, available, accessed 21 November 2018, <https://arxiv.org/ abs/1712.00409>.
14
Hobbins, M., Wood, A., McEvoy, D., Huntington, J., Morton, C., Anderson, M., and Hain, C. (2016). "The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand." Journal of Hydrometeorology, Vol. 17, No. 6, pp. 1745-1761. 10.1175/JHM-D-15-0121.1
15
Howitt, R., Medellín-Azuara, J., MacEwan, D., Lund, J.R., and Sumner, D. (2014). Economic analysis of the 2014 drought for California agriculture. Tech. Rep., Center for Watershed Sciences, University of California, Davis, CA, U.S., p. 20.
16
Jeong, M., Kim, J., Jang, H., and Lee, J. (2016). "ROC evaluation for MLP ANN drought forecasting model." Journal of Korea Water Resources Association, Vol. 49, No. 10, pp. 877-885. 10.3741/JKWRA.2016.49.10.877
17
Kim, G., and Lee, J. (2011). "Evaluation on drought indices using the drought Records." Journal of Korea Water Resources Association, Vol. 44, No. 8, pp. 639-652. 10.3741/JKWRA.2011.44.8.639
18
Kopitar, L., Kocbek, P., Cilar, L., Sheikh, A., and Stiglic, G. (2020). "Early detection of type 2 diabetes mellitus using machine learning-based prediction models." Scientific Reports, Vol. 10, No. 1, 11981. 10.1038/s41598-020-68771-z32686721PMC7371679
19
Le, M., Perez, G., Solomatine, D., and Nguyen, L. (2016). "Meteorological drought forecasting based on climate signals using artificial neural network - a case study in Khanhhoa Province Vietnam." Procedia Engineering, Vol. 154, pp. 1169-1175. 10.1016/j.proeng.2016.07.528
20
Lee, J., Kim, J., Jang, H., and Lee, J. (2013). "Drought forecasting using the Multi Layer Perceptron (MLP) artificial neural network model." Journal of Korea Water Resources Association, Vol. 46, No. 12, pp. 1249-1263. 10.3741/JKWRA.2013.46.12.1249
21
Lim, J.D., and Yang, J.S. (2020). "Possibility analysis of future droughts using long short term memory and standardized groundwater level index." Journal of Korea Water Resources Association, Vol. 53, No. 2, pp. 131-140.
22
Livne, M., Boldsen, J., Mikkelsen, I., Fiebach, J., Sobesky, J., and Mouridsen, K. (2018). "Boosted tree model reformsmultimodal magnetic resonance imaging infarct prediction in acute stroke." Stroke, Vol. 49, No. 4, pp. 912-918. 10.1161/STROKEAHA.117.01944029540608
23
Ma, F., Luo, L., Ye, A., and Duan, Q. (2018). "Seasonal drought predictability and forecast skill in the semi-arid endorheic Heihe River basin in northwestern China." Hydrology and Earth System Sciences, Vol. 22, No. 11, pp. 5697-5709. 10.5194/hess-22-5697-2018
24
McGUIRE, J., and Palmer, W. (1957). "The 1957 drought in the eastern United States." Monthly Weather Review, Vol. 85, No. 9, pp. 305-314. 10.1175/1520-0493(1957)085<0305:TDITEU>2.0.CO;2
25
McKee, T.B., Doesken, N.J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." Proceedings of the 8th Conference on Applied Climatology, Springer, Anaheim, CA, U.S., Vol. 17, No. 22, pp. 179-183.
26
McKinney, W. (2010). "Data structures for statistical computing in python." Proceedings of the 9th Python in Science Conference, SciPy, Austin, TX, U.S., Vol. 445, pp. 51-56. 10.25080/Majora-92bf1922-00a
27
Mishra, A., Desai, V., and Singh, V. (2007). "Drought forecasting using a hybrid stochastic and neural network model." Journal of Hydrologic Engineering, Vol. 12, pp. 626-638. 10.1061/(ASCE)1084-0699(2007)12:6(626)
28
Morid, S., Smakhtin, V., and Bagherzadeh, K. (2007). "Drought forecasting using artificial neural networks and time series of drought indices." International Journal of Climatology: A Journal of the Royal Meteorological Society, Vol. 27, No. 15, pp. 2103-2111. 10.1002/joc.1498
29
Nash, J., and Sutcliffe, J. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. 10.1016/0022-1694(70)90255-6
30
Palmer, W.C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau, Silver Spring, MD, U.S.
31
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). "Scikit-learn: Machine learning in Python." Journal of Machine Learning Research, Vol. 12, pp. 2825-2830.
32
Piryonesi, S., and El-Diraby, T. (2020). "Role of data analytics in infrastructure asset management: Overcoming data size and quality problems." Journal of Transportation Engineering, Part B: Pavements, Vol. 146, No. 2, 04020022. 10.1061/JPEODX.0000175
33
Piryonesi, S., and El-Diraby, T. (2021). "Using machine learning to examine impact of type of performance indicator on flexible pavement deterioration modeling." Journal of Infrastructure Systems, Vol. 27, No. 2, 04021005. 10.1061/(ASCE)IS.1943-555X.0000602
34
Razavian, A.S., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). "CNN features off-the-shelf: an astounding baseline for recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, IEEE, Columbus, OH, U.S., pp. 806-813. 10.1109/CVPRW.2014.131
35
Schmidhuber, J. (2015). "Deep learning in neural networks: An overview." Neural Networks, Vol. 61, pp. 85-117. 10.1016/j.neunet.2014.09.00325462637
36
Shen, Z., Zhang, Q., Singh, V., Sun, P., Song, C., and Yu, H. (2019). "Agricultural drought monitoring across Inner Mongolia, China: Model development, spatiotemporal patterns and impacts." Journal of Hydrology, Vol. 571, pp. 793-804. 10.1016/j.jhydrol.2019.02.028
37
Tadesse, G., Zavaleta, E., Shennan, C., and FitzSimmons, M. (2014). "Prospects for forest-based ecosystem services in forest-coffee mosaics as forest loss continues in southwestern Ethiopia." Applied Geography, Vol. 50, pp. 144-151. 10.1016/j.apgeog.2014.03.004
38
Taylor, R., Moore, C., Cheung, K., and Brandt, C. (2018). "Predicting urinary tract infections in the emergency department with machine learning." PLoS One, Vol. 13, No. 3, e194085. 10.1371/journal.pone.019408529513742PMC5841824
39
Van Der Walt, S., Colbert, S., and Varoquaux, G. (2011). "The NumPy array: A structure for efficient numerical computation." Computing in Science & Engineering, Vol. 13, No. 2, pp. 22-30. 10.1109/MCSE.2011.37
40
Van Rossum, G., and Drake Jr, F.L. (1995). Python tutorial, Python Software Foundation, Amsterdam, Netherlands.
41
Vicente-Serrano, S., Beguería, S., and López-Moreno, J. (2010). "A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index." Journal of Climate, Vol. 23, No. 7, pp. 1696-1718. 10.1175/2009JCLI2909.1
42
Won, J., Choi, J., Lee, O., and Kim, S. (2020). "Copula-based Joint Drought Index using SPI and EDDI and its application to climate change." Science of the Total Environment, Vol. 744, 140701. 10.1016/j.scitotenv.2020.14070132755772
43
Won, J., Jang, S., Kim, K., and Kim, S. (2018). "Applicability of the evaporative demand drought index." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 6, pp. 431-442. 10.9798/KOSHAM.2018.18.6.431
44
Woo, S., Jung, C., Kim, J., and Kim, S. (2018). "Assessment of climate change impact on aquatic ecology health indices in Han river basin using SWAT and random forest." Journal of Korea Water Resources Association, Vol. 51, No. 10, pp. 863-874.
45
Yao, N., Li, Y., Lei, T., and Peng, L. (2018). "Drought evolution, severity and trends in mainland China over 1961-2013." Science of the Total Environment, Vol. 616, pp. 73-89. 10.1016/j.scitotenv.2017.10.32729107781
46
Yoo, J., Song, H., Kim, T., and Ahn, J. (2013). "Evaluation of short-term drought using daily standardized precipitation index and ROC analysis." Journal of The Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1851-1860. 10.12652/Ksce.2013.33.5.1851
47
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural networks?, accessed 24 February 2021, <https://arxiv.org/abs/1411.1792>.
48
Yuan, X., Zhang, M., Wang, L., and Zhou, T. (2017). "Understanding and seasonal forecasting of hydrological drought in the Anthropocene." Hydrology and Earth System Sciences, Vol. 21, No. 11, pp. 5477-5492. 10.5194/hess-21-5477-2017
49
Zhang, H., Si, S., and Hsieh, C.J. (2017). GPU-acceleration for Large-scale tree boosting, accessed 4 February 2021, >https://arxiv.org/abs/1706.08359<.
50
Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019). "Deep learning based recommender system: A survey and new perspectives." ACM Computing Surveys (CSUR), Vol. 52, No. 1, pp. 1-38. 10.1145/3285029
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 54
  • No :8
  • Pages :617-628
  • Received Date : 2021-05-25
  • Revised Date : 2021-06-14
  • Accepted Date : 2021-06-14