All Issue

2023 Vol.56, Issue 10

Research Article

31 October 2023. pp. 603-617
Abstract
References
1
Alsina, J.M., and Cáceres, I. (2011). "Sediment suspension events in the inner surf and swash zone. Measurements in large-scale and high-energy wave conditions." Coastal Engineering, Vol. 58, pp. 657-670. 10.1016/j.coastaleng.2011.03.002
2
Alsina, J.M., van der Zanden, J., Cáceres, I., and Ribberink, J.S. (2018). "The influence of wave groups and wave-swash interactions on sediment transport and bed evolution in the swash zone." Coastal Engineering, Vol. 140, pp. 23-42. 10.1016/j.coastaleng.2018.06.005
3
Bae, H., Do, K., Kim, I.H., and Chang, S. (2022). "Proposal of parameter range that offered optimal performance in the coastal morphodynamic model (XBeach) through GLUE." Journal of Ocean Engineering and Technology, Vol. 36, pp. 251-269. 10.26748/KSOE.2022.013
4
Briganti, R., Torres-Freyermuth, A., Baldock, T.E., Brocchini, M., Dodd, N., Hsu, T.J., Jiang, Z., Kim, Y., Pintado-Patiño, J.C., and Postacchini, M. (2016). "Advances in numerical modelling of swash zone dynamics." Coastal Engineering, Vol. 115, pp. 26-41. 10.1016/j.coastaleng.2016.05.001
5
Butt, T., and Russell, P. (2000). "Hydrodynamics and cross-shore sediment transport in the swash-zone of natural beaches: A review." Journal of Coastal Research, Vol. 16, No. 2, pp. 255-268.
6
Butt, T., and Russell, P. (2005). "Observations of hydraulic jumps in high-energy swash." Journal of Coastal Research, Vol. 21, pp. 1219-1227. 10.2112/04-0187.1
7
Butt, T., Russell, P., Puleo, J.A., Miles, J., and Masselink, G. (2004). "The influence of bore turbulence on sediment transport in the swash and inner surf zones." Continental Shelf Research, Vol. 24, pp. 757-771. 10.1016/j.csr.2004.02.002
8
Cáceres, I., and Alsina, J.M. (2012). "A detailed, event-by-event analysis of suspended sediment concentration in the swash zone." Continental Shelf Research, Vol. 41, pp. 61-76. 10.1016/j.csr.2012.04.004
9
Chandar, D.D.J. (2019). "On overset interpolation strategies and conservation on unstructured grids in OpenFOAM." Computer Physics Communications, Vol. 239, pp. 72-83. 10.1016/j.cpc.2019.01.009
10
Chardón-Maldonado, P., Pintado-Patiño, J.C., and Puleo, J.A. (2016). "Advances in swash-zone research: Small-scale hydrodynamic and sediment transport processes." Coastal Engineering, Vol. 115, pp. 8-25. 10.1016/j.coastaleng.2015.10.008
11
Chen, H., Qian, L., Ma, Z., Bai, W., Li, Y., Causon, D., and Mingham, C. (2019). "Application of an overset mesh based numerical wave tank for modelling realistic free-surface hydrodynamic problems." Ocean Enginering, Vol. 176, pp. 97-117. 10.1016/j.oceaneng.2019.02.001
12
Dai, H.-J., Kikkert, G.A., Chen, B.-T., and Pokrajac, D. (2017). "Entrained air in bore-driven swash on an impermeable rough slope." Coastal Engineering, Vol. 121, pp. 26-43. 10.1016/j.coastaleng.2016.10.002
13
Deng, B., Zhang, W., Tang, H.S., Jiang, C.B., and Liu, X.J. (2022). "An experimental study on hydrodynamic process, beach profile, and sand migration in swash zone under action of dam-break bore." Applied Ocean Research, Vol. 129, 103391. 10.1016/j.apor.2022.103391
14
Desombre, J., Morichon, D., and Mory, M. (2013). "RANS v2f simulation of a swash event: Detailed flow structure." Coastal Engineering, Vol. 71, pp. 1-12. 10.1016/j.coastaleng.2012.07.001
15
Eley, M. (2022). Horizontal and vertical pore pressure gradients under double dam break driven swash event. Ph. D. Dissertation, University of Delaware, Newark, DE, U.S., pp. 1-86.
16
Hai, V.D., Shin, S., Lee, E., Park, H., and Park, J.N. (2022). "Numerical investigation of countermeasure effects on overland flow hydrodynamic and force mitigation in coastal communities." Journal of Ocean Engineering and Technology, Vol. 36, No. 6, pp. 364-397. 10.26748/KSOE.2022.036
17
Hirt, C.W., and Nichols, B.D. (1981). "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of Computational Physics, Vol. 39, pp. 201-225. 10.1016/0021-9991(81)90145-5
18
Hughes, M.G., and Moseley, A.S. (2007). "Hydrokinematic regions within the swash zone." Continental Shelf Research, Vol. 27, pp. 2000-2013. 10.1016/j.csr.2007.04.005
19
Hwang, Y., Do, K., Kim, I., and Chang, S. (2022). "Field observation and Quasi-3D numerical modeling of coastal hydrodynamic response to submerged structures." Journal of Ocean Engineering and Technology, Vol. 32, No. 2, pp. 68-79. 10.26748/KSOE.2022.045
20
Jasak, H., and Tuković, Ž. (2010). "Dynamic mesh handling in OpenFOAM applied to fluid-structure interaction simulations." Proceedings of the V European Conference on Computational Fluid Dynamics, ECCOMAS CFD, Lisbon, Portugal, pp. 1-19.
21
Kikkert, G.A., O'Donoghue, T., Pokrajac, D., and Dodd, N. (2012). "Experimental study of bore-driven swash hydrodynamics on impermeable rough slopes." Coastal Engineering, Vol. 60, pp. 149-166. 10.1016/j.coastaleng.2011.09.006
22
Kim, Y., Zhou, Z., Hsu, T.J., and Puleo, J.A. (2017). "Large eddy simulation of dam-break-driven swash on a rough-planar beach." Journal of Geophysical Research: Oceans, Vol. 122, No. 2, pp. 1274-1296. 10.1002/2016JC012366
23
Klostermann, J., Schaake, K., and Schwarze, R. (2013). "Numerical simulation of a single rising bubble by VOF with surface compression." International Journal for Numerical Methods in Fluids, Vol. 71, pp. 960-982. 10.1002/fld.3692
24
Launder, B.E., and Sharma, B.I. (1974). "Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disk." Letters in Heat and Mass Transfer, Vol. 1, pp. 131-138. 10.1016/0094-4548(74)90150-7
25
Launder, B.E., and Spalding, D.B. (1974). "The numerical computation of turbulent flows." Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289. 10.1016/0045-7825(74)90029-2
26
Lee, J., Jeong, Y.M., Kim, J.S., and Hur, D.S. (2022). "Analysis of hydraulic characteristics according to the cross-section changes in submerged rigid vegetation." Journal of Ocean Engineering and Technology, Vol. 36, No. 5, pp. 326-339. 10.26748/KSOE.2022.028
27
Lin, P., and Liu, P.L.-F. (1998). "A numerical study of breaking waves in the surf zone." Journal of Fluid Mechanics, Vol. 359, pp. 239-264. 10.1017/S002211209700846X
28
Lin, P., and Xu, W. (2005). "NEWFLUME: A numerical water flume for two-dimensional turbulent free surface flows." Journal of Hydraulic Research, Vol. 44, pp. 79-93. 10.1080/00221686.2006.9521663
29
Longo, S., Petti, M., and Losada, I.J. (2002). "Turbulence in the swash and surf zones: A review." Coastal Engineering, Vol. 45, No. 3-4, pp. 129-147. 10.1016/S0378-3839(02)00031-5
30
Masselink, G., and Hughes, M.G. (1998). "Field investigation of sediment transport in the swash zone." Continental Shelf Research, Vol. 18, pp. 1179-1199. 10.1016/S0278-4343(98)00027-2
31
Masselink, G., and Puleo, J.A. (2006). "Swash-zone morphodynamics." Continental Shelf Research, Vol. 26, No. 5, pp. 661-680. 10.1016/j.csr.2006.01.015
32
Masselink, G., Evans, D., Hughes, M.G., and Russell, P. (2005). "Suspended sediment transport in the swash zone of a dissipative beach." Marine Geology, Vol. 216, No. 2005, pp. 169-189. 10.1016/j.margeo.2005.02.017
33
Mohammadi, B., and Pironneau, O. (1994). Analysis of the K-epsilon turbulence model. John Wiley and Sons, New York, NY, U.S.
34
O'Donoghue, T., Pokrajac, D., and Hondebrink, L. (2010). "Laboratory and numerical study of dambreak-generated swash on impermeable slopes." Coastal Engineering, Vol. 57, pp. 513-530. 10.1016/j.coastaleng.2009.12.007
35
Olney, C. (2022). Horizontal pressure gradient and bed shear stress under double dam-break driven swash. Ph. D. Dissertation, University of Delaware, Newark, DE, U.S., pp. 1-96.
36
Park, I.R., Kim, K.S., Kim, J., and Van S.H. (2012). "Numerical investigation of the effects of turbulence intensity on dam-break flows." Ocean Enginering, Vol. 42, pp. 176-187. 10.1016/j.oceaneng.2012.01.005
37
Petti, M., and Longo, S. (2001). "Turbulence experiments in the swash zone." Coastal Engineering, Vol. 43, pp. 1-24. 10.1016/S0378-3839(00)00068-5
38
Pintado-Patiño, J.C., Puleo, J.A., Krafft, D., and Torres-Freyermuth, A. (2021). "Hydrodynamics and sediment transport under a dam-break-driven swash: An experimental study." Coastal Engineering, Vol. 170, 103986. 10.1016/j.coastaleng.2021.103986
39
Puleo, J.A., and Torres-Freyermuth. A. (2016). "The second international workshop on swash-zone processes." Coastal Engineering, Vol. 115, pp. 1-7. 10.1016/j.coastaleng.2015.09.007
40
Puleo, J.A., Beach, R.A., Holman, R.A., and Allen, J.S. (2000). "Swash zone sediment suspension and transport and the importance of bore induced turbulence." Journal of Geophysical Research, Vol. 105, No. C7, pp. 17021-17044. 10.1029/2000JC900024
41
Puleo, J.A., Farhadzadeh, A., and Kobayashi, N. (2007). "Numerical simulation of swash zone fluid accelerations." Journal of Geophysical Research: Oceans, Vol. 112, C07007. 10.1029/2006JC004084
42
Raubenheimer, B., Elgar, S., and Guza, R.T. (2004). "Observations of swash zone velocities: A note on friction coefficients." Journal of Geophysical Research, Vol. 109, No. C1. doi: 10. 1029/2003JC001877. 10.21236/ADA630116
43
Salehi, S., and Nilsson, H. (2023). "A semi-implicit slip algorithm for mesh deformation in complex geometries, implemented in OpenFOAM." Computer Physics Communications, Vol. 287, 108703. 10.1016/j.cpc.2023.108703
44
Shih, T.-H., Zhu, J., and Lumley, J.L. (1996). "Calculation of wall-bounded complex flows and free shear flows." International Journal for Numerical Methods in Fluids, Vol. 23, pp. 1133- 1144. 10.1002/(SICI)1097-0363(19961215)23:11<1133::AID-FLD456>3.0.CO;2-A
45
Son, B., and Do, K. (2021). "Optimization of SWAN wave model to improve the accuracy of winter storm wave prediction in the East Sea." Journal of Ocean Engineering and Technology, Vol. 35, pp. 273-286. 10.26748/KSOE.2021.019
46
Völkner, S., Brunswig, J., and Rung, T. (2017). "Analysis of non-conservative interpolation techniques in overset grid finite-volume methods." Computers and Fluids, Vol. 148, pp. 39-55. 10.1016/j.compfluid.2017.02.010
47
Willmott, C. (1981). "On the validation of models." Physical Geography, Vol. 2, pp. 184-194. 10.1080/02723646.1981.10642213
48
Windt, C., Davidson, J., Akram, B., and Ringwood, J.V. (2018). "Performance assessment of the overset grid method for numerical wave tank experiments in the OpenFOAM environment." International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers, New York, NY, U.S., Vol. 51319, V010T09A006. 10.1115/OMAE2018-77564
49
Windt, C., Davidson, J., Chandar, D.D., Faedo, N., and Ringwood, J.V. (2020). "Evaluation of the overset grid method for control studies of wave energy converters in OpenFOAM numerical wave tanks." Journal of Ocean Engineering and Marine Energy, Vol. 6, No. 1, pp. 55-70. 10.1007/s40722-019-00156-5
50
Ye, Z., and Zhao, X. (2017). "Investigation of water-water interface in dam break flow with a wet bed." Journal of Hydrology, Vol. 548, pp. 104-120. 10.1016/j.jhydrol.2017.02.055
51
Zhang, Q., and Liu, P.L.-F. (2008). "A numerical study of swash flows generated by bores." Coastal Engineering, Vol. 55, pp. 1113- 1134. 10.1016/j.coastaleng.2008.04.010
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 56
  • No :10
  • Pages :603-617
  • Received Date : 2023-08-31
  • Revised Date : 2023-09-19
  • Accepted Date : 2023-09-19