All Issue

2021 Vol.54, Issue 12S Preview Page

Research Article

31 December 2021. pp. 1107-1118
Abstract
References
1
Arnold, J.G., Allen, P.M., and Bernhardt, G. (1993). "A comprehensive surface-groundwater flow Model." Journal of Hydrology, Vol. 142, No. 1-4, pp. 47-69. doi: 10.1016/0022-1694(93)90004-S 10.1016/0022-1694(93)90004-S
2
Chen, X., Li, F.W., Li, J.Z., and Feng, P. (2019). "Three-dimensional identification of hydrological drought and multivariate drought risk probability assessment in the Luanhe River basin, China." Theoretical and Applied Climatology, Vol. 137, pp. 3055-3076. doi: 10.1007/s00704-019-02780-5 10.1007/s00704-019-02780-5
3
Choi, J.R., Chung, I.M., Jeung, S.J., Choo, K.S., Oh, C.H., and Kim, B.S. (2021a). "Development and verification of the available number of water intake days in ungauged local water source using the SWAT model and flow recession." Water, Vol. 13, No. 11, 1511. doi: 10.3390/w13111511 10.3390/w13111511
4
Choi, J.R., Yoon, H.C., Won, C.H., Lee, B.H., and Kim, B.S. (2021b). "A study on the estimation and evaluation of ungauged reservoir inflow for local government's agricultural drought forecasting and warning." Journal of the Korea Water Resources Association, Vol. 54, No. 6, pp. 395-405. doi: 10.3741/JKWRA.2021.54.6.395 10.3741/JKWRA.2021.54.6.395
5
Han, H.C., Choi, C.H., Jung, J.W., and Kim, H.S. (2021). "Application of sequence to sequence learning based LSTM model (LSTM-s2s) for forecasting dam inflow." Journal of the Korea Water Resources Association, Vol. 54, No. 3, pp. 157-166. doi: 10.3741/JKWRA.2021.54.3.157 10.3741/JKWRA.2021.54.3.157
6
Han, J.H., Ryu, T.S., Lim, K.J., and Jung, Y.H. (2016). "A review of baseflow analysis techniques of watershed-scale runoff models." Journal of the Korean Society of Agricultural Engineers, Vol. 58, No. 4, pp. 75-83. doi: 10.5389/KSAE.2016.58.4.075 10.5389/KSAE.2016.58.4.075
7
Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780. doi: 10.1162/neco.1997.9.8.1735 10.1162/neco.1997.9.8.17359377276
8
Hoyos, N., Correa-Metrio, A., Jepsen, S.M., Wemple, B., Valencia, S., Marsik, M., Doria, R., Escobar, J., Restrepo, J.C., and Velez, M.I. (2019). "Modeling streamflow response to persistent drought in a coastal tropical mountainous watershed, Sierra Nevada De Santa Marta, Colombia." Water, Vol. 11, No. 1, p. 94. doi: 10.3390/w11010094 10.3390/w11010094
9
Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z. (2018). "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation." Water, Vol. 10, No. 11, 1543. doi: 10.3390/w10111543 10.3390/w10111543
10
Jung, J.W., Mo, H.L., Lee, J.H., Yoo, Y.H., and Kim, H.S. (2021). "Flood Stage Forecasting at the Gurye-gyo station in Sumjin River using LSTM-based deep learning models" Journal of the Korean Society of Hazard Mitigation, Vol. 21, No. 3, pp. 193-201. doi: 0.9798/KOSHAM.2021.21.3.193 10.9798/KOSHAM.2021.21.3.193
11
Jung, S.H., Cho, H.S., Kim, J.Y., and Lee, G.H. (2018). "Prediction of water level in a tidal river using a deep-learning based LSTM model" Journal of the Korea Water Resources Association, Vol. 51, No. 12, pp. 1207-1216. doi: 10.3741/JKWRA.2018.51.12.1207 10.3741/JKWRA.2018.51.12.1207
12
Khalilian, S., and Shahvari, N. (2019). "A SWAT evaluation of the effects of climate change on renewable water resources in salt lake sub-basin, Iran." AgriEngineering, Vol. 1, No. 1, pp. 44-57. doi: 10.3390/agriengineering1010004 10.3390/agriengineering1010004
13
Kim, C.G., and Kim, N.W. (2012). "Comparison of natural flow estimates for the han river basin using TANK." Journal of the Korea Water Resources Association, Vol. 45, No. 3, pp. 301-316. doi: 10.3741/JKWRA.2012.45.3.301 10.3741/JKWRA.2012.45.3.301
14
Kim, D.H., Hwang, S.W., Jang, T.I., and So, H.C. (2018). "Assessing climate change impacts on hydrology and water quality using SWAT model in the Mankyung watershed." Journal of the Korean Society of Agricultural Engineers, Vol. 60, No. 6, pp. 83-96. doi: 10.5389/KSAE.2018.60.6.083 10.5389/KSAE.2018.60.6.083
15
Kim, D.R., and Kim, S.J. (2017). "A study on parameter estimation for SWAT calibration considering streamflow of long-term drought periods." Journal of the Korean Society of Agricultural Engineers, Vol. 59, No. 2, pp. 19-27. doi: 10.5389/KSAE.2017.59.2.019 10.5389/KSAE.2017.59.2.019
16
Kim, E.D., Ko, S.K., and Lee, B.T. (2021). "Technical trends of time-series data imputation." ETRI Electronics and Telecommunications Trends. doi: 10.22648/ETRI.2021.J.360414 10.22648/ETRI.2021.J.360414
17
Korea Research Institute for Human Settlements (KRIHS) (2020). A proposal to establish the reference discharges for rational river management.
18
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M. (2018). "Rainfall-runoff modelling using long short-term memory (LSTM) networks." Hydrology and Earth System Sciences, Vol. 22, No. 11, pp. 6005-6022. doi: 10.5194/hess-22-6005-2018 10.5194/hess-22-6005-2018
19
Le, M.H., Lakshmi, V., Bolten, J., and Bui, D.D. (2020). "Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam basins." Journal of Hydrology, Vol. 586. doi: 10.1016/j.jhydrol.2020.124820 10.1016/j.jhydrol.2020.124820
20
Lee, D.E., Lee, G.H., Kim, S.W., and Jung, S.H. (2020). "Future runoff analysis in the mekong river basin under a climate change scenario using deep learning." Water, Vol. 12, No. 6. doi: 10.3390/w12061556 10.3390/w12061556
21
Lee, G.H., and Jung, S.H. (2018). "Comparison of physics-based and data-driven models for streamflow simulation of the mekong river." Journal of the Korea Water Resources Association, Vol. 51, No. 6, pp. 503-514. doi: 10.3741/JKWRA.2018.51.6.503 10.3741/JKWRA.2018.51.6.503
22
Leta, O.T., and Bauwens, W. (2018). "Assessment of the impact of climate change on daily extreme peak and low flows of Zenne Basin in Belgium." Hydrology, Vol. 5, No. 3, pp. 38. doi: 10.3390/hydrology5030038 10.3390/hydrology5030038
23
Mao, G., Wang, M., Liu, J., Wang, Z., Wang, K., Meng, Y., and Zhong, R. (2021). "Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation." Physics and Chemistry of the Earth, Vol. 123, No. 1, 103026. doi: 10.1016/j.pce.2021.103026 10.1016/j.pce.2021.103026
24
Ministry of Land, Infrastructure and Transportation of Korea (MOLIT) (2000). The long-term comprehensive water resource plan (Water Vision 2020).
25
Mok, J.Y., Choi, J.H., and Moon, Y.I. (2020). "Prediction of multipurpose dam inflow using deep learning." Journal of the Korea Water Resources Association, Vol. 53, No. 2, pp. 97-105. doi: 10.3741/JKWRA.2020.53.2.97 10.3741/JKWRA.2020.53.2.97
26
Nash, J.E., and Sutcliffe, J.V. (1970) "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. doi: 10.1016/0022-1694(70)90255-6 10.1016/0022-1694(70)90255-6
27
Ouma, Y.O., Cheruyot, R., and Wachera, A.N. (2021). "Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basin." Complex & Intelligent Systmes, doi: 10.1007/s40747-021-00365-2 10.1007/s40747-021-00365-2
28
Park, J.K. (2009). "Application of SWAT model for daily streamflow at the Kum River." Journal of the Korea Society of Environmental Administration, Vol. 15, No. 1, pp. 29-36.
29
Sehgal, V., and Sridhar, V. (2018). "Effect of hydroclimatological teleconnections on the watershed-scale drought predictability in the southeastern United States." International Journal of Climatology, Vol. 38, No. S1, pp. e1139-e1157. doi: 10.1002/joc.5439 10.1002/joc.5439
30
Shim, K.H., Kim, G.H., Im, T.H., Kim, Y.S., and Kim, S.M. (2021). "A study on the water quality improvement of major tributaries in Seoul, applying watershed evaluation techniques." Journal of Korean Society on Water Environment, Vol. 37, No. 1, pp. 32-46. doi: 10.15681/KSWE.2021.37.1.32 10.15681/KSWE.2021.37.1.32
31
Visakh, S., Raju, P.V., Kulkarni, S.S., and Diwakar, P.G. (2019). "Inter-comparison of water balance components of river basins draining into selected delta districts of Eastern India." The Science of the Total Environment, Vol. 654, pp. 1258-1269. doi: 10.1016/j.scitotenv.2018.11.162 10.1016/j.scitotenv.2018.11.16230841399
32
Xu, W., Jiang, Y., Jhang, X., Li, Y., Zhang, R., and Fu, G. (2020). "Using long short-term memory networks for river flow prediction." Hydrology Research, Vol. 51, No. 6, pp. 1358-1376. doi: 10.2166/nh.2020.026 10.2166/nh.2020.026
33
Yang, M.H., Nam, W.H., Kim, H.J., Kim, T.G., Shin, A.K., and Kang, M.S. (2021). "Anomaly detection in reservoir water level data using the LSTM model based on deep learning." Journal of the Korean Society of Hazard Mitigation, Vol. 21, No. 1, pp. 71-81. doi: 10.9798/KOSHAM.2021.21.1.71 10.9798/KOSHAM.2021.21.1.71
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 54
  • No :12
  • Pages :1107-1118
  • Received Date :2021. 09. 27
  • Revised Date :2021. 11. 03
  • Accepted Date : 2021. 11. 05