All Issue

2023 Vol.56, Issue 10 Preview Page

Research Article

31 October 2023. pp. 679-690
Abstract
References
1
American Water Works Association (AWWA) (2008). Water audits and loss control programs. Washington, DC.
2
Balut, A., Brodziak, R., Bylka, J., and Zakrzewski, P. (2018). "Battle of post-disaster response and restauration (BPDRR)." 1st International WDSA/CCWI 2018 Joint Conference, Kingston, Ontario, Canada.
3
Basnet, L., Brill, D., Ranjithan, R., and Mahinthakumar, K. (2023). "Supervised machine learning approaches for leak localization in water distribution systems: Impact of complexities of leak characteristics." Journal of Water Resources Planning and Management, Vol. 149, No. 8, 04023032. 10.1061/JWRMD5.WRENG-6047
4
Choi, J., Jeong, G., and Kang, D. (2021). "Multiple leak detection in water distribution networks following seismic damage." Sustainability, Vol. 13, No. 15, 8306. 10.3390/su13158306
5
Choi, Y.H., Jung, D., Jun, H., and Kim, J.H. (2018). "Improving water distribution systems robustness through optimal valve installation." Water, Vol. 10, No. 9, 1223. 10.3390/w10091223
6
Daniel, I., Pesantez, J., Letzgus, S., Khaksar Fasaee, M.A., Alghamdi, F., Berglund, E., Mahinthakumar, G., and Cominola, A. (2022). "A sequential pressure-based algorithm for data-driven leakage identification and model-based localization in water distribution networks." Journal of Water Resources Planning and Management, Vol. 148, No.6, 04022025. 10.1061/(ASCE)WR.1943-5452.0001535
7
Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA II." Proceedings of the International Conference on Parallel Problem Solving From Nature, Springer, Paris, France, pp. 849-858. 10.1007/3-540-45356-3_83
8
Jun, S., and Lansey, K.E. (2023). "Convolutional neural network for burst detection in smart water distribution systems." Water Resources Management, Vol. 1, No. 15, pp. 3729-3743. 10.1007/s11269-023-03524-x
9
Kingma, D.P., and Ba, J. (2015). "Adam: A method for stochastic optimization." Proceedings 3rd International Conference on Learning Representations. ICLR 2015, San Diego, CA, U.S.
10
Lambert, A. (1994). "Accounting for losses: The Bursa and background concept (BABE)." Water and Environment Journal, Vol. 8, No. 2, pp. 205-214. 10.1111/j.1747-6593.1994.tb00913.x
11
LeCun, Y., Bottou, L., Orr, G.B., and Müller, K.R. (2002). Efficient backprop. In Neural networks: Tricks of the trade. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, pp. 9-50. 10.1007/3-540-49430-8_2
12
Marvin, G., Grbčić, L., Družeta, S., and Kranjčević, L. (2023). "Water distribution network leak localization with histogram-based gradient boosting." Journal of Hydroinformatics, Vol. 25, No. 3, pp. 663-684. 10.2166/hydro.2023.102
13
Romero-Ben, L., Alves, D., Blesa, J., Cembrano, G., Puig, V., and Duviella, E. (2023). "Leak detection and localization in water distribution networks: review and perspective." Annual Reviews in Control, Vol. 55, pp. 392-419. 10.1016/j.arcontrol.2023.03.012
14
Rossman, L., Woo, H., Tryby, M., Shang, F., Janke, R., and Haxton, T. (2020). EPANET 2.2 user manual. U.S. Environmental Protection Agency, Cincinnati, OH, U.S.
15
Sophocleous, S., and Nikoloudi, E. (2018). "Simulation-based framework for the restoration of earthquake-damaged water distribution networks using a genetic algorithm: (118)." 1st International WDSA/CCWI 2018 Joint Conference, Kingston, Ontario, Canada.
16
Tornyeviadzi, H.M., and Seidu, R. (2023). "Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data." Engineering Applications of Artificial Intelligence, Vol. 122, 106062. 10.1016/j.engappai.2023.106062
17
Tyagi, V., Pandey, P., Jain, S., and Ramachandran, P. (2023). "A two-stage model for data-driven leakage detection and localization in water distribution networks." Water, Vol. 15, No. 15, 2710. 10.3390/w15152710
18
Walski, T.M., Brill Jr, E.D., Gessler, J., Goulter, I.C., Jeppson, R.M., Lansey, K., Lee, H.L., Liebman, J.C., Mays, L., Morgan, D.R., and Ormsbee, L. (1987). "Battle of the network models: Epilogue." Journal of water resources Planning and Management, Vol. 113, No. 2, pp. 191-203. 10.1061/(ASCE)0733-9496(1987)113:2(191)
19
Wan, X., Farmani, R., and Keedwell, E. (2023). "Real-time gradual leakage detection system for water distribution networks based on MIMO-ANN." EGU General Assembly 2023, Vienna, Austria & Online. 10.5194/egusphere-egu23-2328
20
Yoo, D.G., Kang, D., Jun, H., and Kim, J.H. (2014). "Rehabilitation priority determination of water pipes based on hydraulic importance." Water, Vol. 6, No. 12, pp. 3864-3887. 10.3390/w6123864
21
Zanfei, A., Menapace, A., Brentan, B.M., Righetti, M., and Herrera, M. (2022). "Novel approach for burst detection in water distribution systems based on graph neural networks." Sustainable Cities and Society, Vol. 86, 104090. 10.1016/j.scs.2022.104090
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 56
  • No :10
  • Pages :679-690
  • Received Date : 2023-09-13
  • Revised Date : 2023-10-04
  • Accepted Date : 2023-10-10