All Issue

2024 Vol.57, Issue 7 Preview Page

Research Article

31 July 2024. pp. 471-479
Abstract
References
1

Arora, V.K., and Boer, G.J. (2001). "Effects of simulated climate change on the hydrology of major river basins." Journal of Geophysical Research: Atmospheres, Vol. 106, No. D4, pp. 3335-3348.

10.1029/2000JD900620
2

Assem, H., Ghariba, S., Makrai, G., Johnston, P., Gill, L., and Pilla, F. (2017). "Urban water flow and water level prediction based on deep learning." In Machine Learning and Knowledge Discovery in Databases: European Conference, Springer, Skopje, Macedonia, Vol. 10536, pp. 317-329.

10.1007/978-3-319-71273-4_26
3

Baek, S.S., Pyo, J., and Chun, J.A. (2020). "Prediction of water level and water quality using a CNN-LSTM combined deep learning approach." Water, Vol. 12, No. 12, 3399.

10.3390/w12123399
4

Bitew, M.M., and Gebremichael, M. (2011). "Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model." Water Resources Research, Vol. 47, No. 6. doi: 10.1029/2010WR009917.

10.1029/2010WR009917
5

Godin, F., Degrave, J., Dambre, J., De Neve, W. (2018). "Dual rectified linear units (DReLUs): A replacement for tanh activation functions in quasi-recurrent neural networks." Pattern Recognition Letters, Vol. 116, pp. 8-14.

10.1016/j.patrec.2018.09.006
6

Han, H., Abitew, T.A., Park, S., Green, C.H., and Jeong, J. (2023). "Spatiotemporal evaluation of satellite-based precipitation products in the Colorado river basin." Journal of Hydrometeorology, Vol. 24, No. 10, pp. 1739-1754.

10.1175/JHM-D-23-0003.1
7

Han, H., and Morrison, R.R. (2022). "Improved runoff forecasting performance through error predictions using a deep-learning approach." Journal of Hydrology, Vol. 608, 127653.

10.1016/j.jhydrol.2022.127653
8

Han, H., Choi, C., Kim, J., Morrison, R.R., Jung, J., and Kim, H.S. (2021). "Multiple-depth soil moisture estimates using artificial neural network and long short-term memory models." Water, Vol. 13, No. 18, 2584.

10.3390/w13182584
9

Harris, A., Rahman, S., Hossain, F., Yarborough, L., Bagtzoglou, A. C., and Easson, G. (2007). "Satellite-based flood modeling using TRMM-based rainfall products." Sensors, Vol. 7, No. 12, pp. 3416-3427.

10.3390/s712341628903302PMC3841903
10

Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780.

10.1162/neco.1997.9.8.17359377276
11

Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z. (2018). "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation." Water, Vol. 10, No. 11, 1543. doi: 10.3390/w10111543.

10.3390/w10111543
12

Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., and Stocker, E.F. (2007). "The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales." Journal of Hydrometeorology, Vol. 8, No. 1, pp. 38-55.

10.1175/JHM560.1
13

Joyce, R.J., Janowiak, J.E., Arkin, P.A., and Xie, P. (2004). "CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution." Journal of Hydrometeorology, Vol. 5, No. 3, pp. 487-503.

10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
14

Kay, A.L., Rudd, A.C., Fry, M., Nash, G., and Allen, S. (2021). "Climate change impacts on peak river flows: Combining national-scale hydrological modelling and probabilistic projections." Climate Risk Management, Vol. 31, 100263.

10.1016/j.crm.2020.100263
15

Kim, D., Han, H., Wang, W. and Kim, H. S. (2022). "Improvement of deep learning models for river water level prediction using complex network method." Water, Vol. 14, 466.

10.3390/w14030466
16

Kim, J., and Han, H. (2021). "Evaluation of the CMORPH high-resolution precipitation product for hydrological applications over South Korea." Atmospheric Research, Vol. 258, 105650.

10.1016/j.atmosres.2021.105650
17

Le, M.H., Lakshmi, V., Bolten, J., and Du Bui, D. (2020). "Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam basins." Journal of Hydrology, Vol. 586, 124820.

10.1016/j.jhydrol.2020.124820
18

Lee, M., Kim, J., Yoo, Y., Kim, H.S., Kim, S.E., and Kim, S. (2021). "Water level prediction in Taehwa River basin using deep learning model based on DNN and LSTM." Journal of Korea Water Resources Association, Vol. 54, No. spc1, pp. 1061-1069.

19

Li, G., Liu, Z., Zhang, J., Han, H., and Shu, Z. (2024). "Bayesian model averaging by combining deep learning models to improve lake water level prediction." Science of The Total Environment, Vol. 906, 167718.

10.1016/j.scitotenv.2023.16771837832688
20

Li, W., Gao, X., Hao, Z. and Sun, R. (2022). "Using deep learning for precipitation forecasting based on spatio-temporal information: A case study." Climate Dynamics, Vol. 58, pp. 443-457.

10.1007/s00382-021-05916-4
21

Park, K., Jung, Y., Seong, Y., and Lee, S. (2022). "Development of deep learning models to improve the accuracy of water levels time series prediction through multivariate hydrological data." Water, Vol. 14, No. 3, 469.

10.3390/w14030469
22

Schreider, S.Y., Smith, D.I., and Jakeman, A.J. (2000). "Climate change impacts on urban flooding." Climatic Change, Vol. 47, pp. 91-115.

10.1023/A:1005621523177
23

Sorooshian, S., Hsu, K.L., Gao, X., Gupta, H.V., Imam, B., and Braithwaite, D. (2000). "Evaluation of PERSIANN system satellite-based estimates of tropical rainfall." Bulletin of the American Meteorological Society, Vol. 81, No. 9, pp. 2035-2046.

10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
24

Szandała, T. (2021). Review and comparison of commonly used activation functions for deep neural networks. Bio-inspired Neurocomputing, Springer, Singapore, pp. 203-224.

10.1007/978-981-15-5495-7_11
25

Tarekegn, N., Abate, B., Muluneh, A., and Dile, Y. (2022). "Modeling the impact of climate change on the hydrology of Andasa watershed." Modeling Earth Systems and Environment, Vol. 8, No. 1, pp. 103-119.

10.1007/s40808-020-01063-7
26

Tessema, N., Kebede, A., and Yadeta, D. (2021). "Modelling the effects of climate change on streamflow using climate and hydrological models: the case of the Kesem sub-basin of the Awash River basin, Ethiopia." International Journal of River Basin Management, Vol. 19, No. 4, pp. 469-480.

10.1080/15715124.2020.1755301
27

Tobin, K.J., and Bennett, M.E. (2010). "Adjusting satellite precipitation data to facilitate hydrologic modeling." Journal of Hydrometeorology, Vol. 11, No. 4, pp. 966-978.

10.1175/2010JHM1206.1
28

Velpuri, N.M., Senay, G.B., and Asante, K.O. (2012). "A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data." Hydrology and Earth System Sciences, Vol. 16, No. 1, pp. 1-18.

10.5194/hess-16-1-2012
29

Wang, Q., and Wang, S. (2020). "Machine learning-based water level prediction in Lake Erie." Water, Vol. 12, No. 10, 2654.

10.3390/w12102654
30

Xiang, Z., Yan, J., and Demir, I. (2020). "A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning." Water Resources Research, Vol. 56, No. 1, e2019WR025326.

10.1029/2019WR025326
31

Xie, P., Joyce, R., Wu, S., Yoo, S. H., Yarosh, Y., Sun, F. Lin, R. (2017). "Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998." Journal of Hydrometeorology, Vol. 18, pp. 1617-1641.

10.1175/JHM-D-16-0168.1
32

Xie, Z., Liu, Q. and Cao, Y. (2021). "Hybrid deep learning modeling for water level prediction in Yangtze River." Intelligent Automation & Soft Computing, Vol. 28, pp. 153-166.

10.32604/iasc.2021.016246
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 57
  • No :7
  • Pages :471-479
  • Received Date : 2024-04-04
  • Revised Date : 2024-06-21
  • Accepted Date : 2024-06-25