All Issue

2022 Vol.55, Issue 7 Preview Page

Research Article

31 July 2022. pp. 495-504
Abstract
References
1
Bicknell, B.R., Imhoff, J.C., Kittle Jr, J.L., Donigian Jr, A.S., and Johanson, R.C. (1996). Hydrological simulation program-FORTRAN. User's Manual for Release 11. U.S. Environmental Protection Agency, Washington, D.C., U.S.
2
Cho, K., and Kim, Y. (2022). "Improving streamflow prediction in the WRF-Hydro model with LSTM networks." Journal of Hydrology, Vol. 605, 127297. 10.1016/j.jhydrol.2021.127297
3
Choi, H., Cho, K., and Bengio, Y. (2018). "Fine-grained attention mechanism for neural machine translation." Neurocomputing, Vol. 284, pp. 171-176. 10.1016/j.neucom.2018.01.007
4
Choi, J.-H., Kim, J.-S., Gwon, J.-H., and Moon, Y.-I. (2016). "Weighting assessment on evaluation indicators of dam rehabilitation using the AHP analysis." Journal of Korea Water Resources Association, Vol. 49, No. 5, pp. 381-389. 10.3741/JKWRA.2016.49.5.381
5
Costa-jussà, M.R. (2018). "From feature to paradigm: Deep learning in machine translation." The Journal of Artificial Intelligence Research, Vol. 61, pp. 947-974. 10.1613/jair.1.11198
6
Dawson, C.W., and Wilby, R.L. (2001). "Hydrological modelling using artificial neural networks." Progress in Physical Geography, Vol. 25, No. 1, pp. 80-108.
7
Devia, G.K., Ganasri, B.P., and Dwarakish, G.S. (2015). "A review on hydrological models." Aquatic Procedia, Vol. 4, pp. 1001-1007. 10.1016/j.aqpro.2015.02.126
8
Fu, M., Fan, T., Ding, Z., Salih, S.Q., Al-Ansari, N., and Yaseen, Z.M. (2020). "Deep learning data-intelligence model based on adjusted forecasting window scale: Application in daily streamflow simulation." IEEE Access, Vol. 8, pp. 32632-32651. 10.1109/ACCESS.2020.2974406
9
Han, H., Choi, C., Jung, J., and Kim, H.S. (2021). "Application of sequence to sequence learning based LSTM model (LSTM-s2s) for forecasting dam inflow." Journal of Korea Water Resources Association, Vol. 54, No. 3, pp. 157-166. 10.3741/JKWRA.2021.54.3.157
10
He, X., Luo, J., Li, P., Zuo, G., and Xie, J. (2020). "A hybrid model based on variational mode decomposition and gradient boosting regression tree for monthly runoff forecasting." Water Resources Management, Vol. 34, No. 2, pp. 865-884. 10.1007/s11269-020-02483-x
11
Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780. 10.1162/neco.1997.9.8.17359377276
12
Jung, S., Lee, D., and Lee, K. (2017). "Prediction of river water level using deep-learning open library." Korean Society of Hazard Mitigation, Vol. 18, No. 1, pp. 1-11. 10.9798/KOSHAM.2018.18.1.1
13
Kao, I.-F., Zhou, Y., Chang, L.-C., and Chang, F.-J. (2020). "Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting." Journal of Hydrology, Vol. 583, 124631. 10.1016/j.jhydrol.2020.124631
14
Kim, B.K., Kim, S., Lee, E.T., and Kim, H.S. (2007). "Methodology for estimating ranges of SWAT model parameters: Application to Imha Lake inflow and suspended sediments." Journal of The Korean Society of Civil Engineers B, Vol. 27 No. 6B, pp. 661-668.
15
Kwak, J.-W., Kim, H.-S., and Hong, I.-P. (2009). "A study of progressive parameter calibrations for rainfall-runoff models." Proceedings of the Korea Water Resources Association Conference, pp. 1499-1503.
16
Kwon, O.-I., and Shim, M.-P. (1997). "Determination scheme of variable restricted water level during flood period of multipurpose dam." Journal of Korea Water Resources Association, Vol. 30, No. 6, pp. 709-720.
17
Le, X.-H., Ho, H. V., Lee, G., and Jung, S. (2019). "Application of Long Short-Term Memory (LSTM) neural network for flood forecasting." Water, Vol. 11, No. 7, 1387. 10.3390/w11071387
18
Legates, D.R., and McCabe Jr., G.J. (1999). "Evaluating the use of "goodness-of-fit" Measures in hydrologic and hydroclimatic model validation." Water Resources Research, Vol. 35, No. 1, pp. 233-241. 10.1029/1998WR900018
19
Li, W., Guo, D., and Fang, X. (2018). "Multimodal architecture for video captioning with memory networks and an attention mechanism." Pattern Recognition Letters, Vol. 105, pp. 23-29. 10.1016/j.patrec.2017.10.012
20
Li, Z., Liu, W., Zhang, X., and Zheng, F. (2009). "Impacts of land use change and climate variability on hydrology in an agricultural catchment on the loess plateau of China." Journal of Hydrology, Vol. 377, No. 1-2, pp. 35-42. 10.1016/j.jhydrol.2009.08.007
21
Luong, M.-T., Pham, H., and Manning, C.D. (2015). "Effective approaches to attention-based neural machine translation." Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, ACL, Lisbon, Portugal, pp. 1412-1421. 10.18653/v1/D15-1166
22
Marmanis, D., Schindler, K., Wegner, J. D., Galliani, S., Datcu, M., and Stilla, U. (2018). "Classification with an edge: Improving semantic image segmentation with boundary detection." ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 135, pp. 158-172. 10.1016/j.isprsjprs.2017.11.009
23
National Water Resources Management Infomation System (WAMIS) (2003). South Korea, accessed 10, January 2022, <www.wamis.go.kr>.
24
Noh, J.-K., and Lee, J.-N. (2011). "Comparison of streamflow runoff model in Korea for applying to reservoir operation." Korean Journal of Agricultural Science, Vol. 38, No. 3, pp. 513-524.
25
Nourani, V. (2017). "An emotional ANN (EANN) approach to modeling rainfall-runoff process." Journal of Hydrology, Vol. 544, pp. 267-277. 10.1016/j.jhydrol.2016.11.033
26
Nourani, V., Komasi, M., and Mano, A. (2009). "A multivariate ANN-wavelet approach for rainfall-runoff modeling." Water Resources Management, Vol. 23, No. 14, pp. 2877-2894. 10.1007/s11269-009-9414-5
27
Qi, Y., Zhou, Z., Yang, L., Quan, Y., and Miao, Q. (2019). "A decomposition-ensemble learning model based on LSTM neural network for daily reservoir inflow forecasting." Water Resources Management, Vol. 33, No. 12, pp. 4123-4139. 10.1007/s11269-019-02345-1
28
Song, K., Yao, T., Ling, Q., and Mei, T. (2018). "Boosting image sentiment analysis with visual attention." Neurocomputing, Vol. 312, pp. 218-228. 10.1016/j.neucom.2018.05.104
29
Sutskever, I., Vinyals, O., and Le, Q.V. (2014). "Sequence to sequence learning with neural networks." Proceedings of the 27th International Conference on Neural Information Processing Systems, MIT Press, Cambridge, MA, U.S., Vol. 2, pp. 3104-3112.
30
Tiwari, M.K., and Chatterjee, C. (2010). "Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach." Journal of Hydrology, Vol. 394, No. 3-4, pp. 458-470. 10.1016/j.jhydrol.2010.10.001
31
Xiang, Z., Yan, J., and Demir, I. (2020). "A rainfall-runoff model with LSTM-based sequence-to-sequence learning." Water Resources Research, Vol. 56, No. 1, e2019WR025326. 10.1029/2019WR025326
32
Yan, L., Chen, C., Hang, T., and Hu, Y. (2021). "A stream prediction model based on attention-LSTM." Earth Science Informatics, Vol. 14, No. 2, pp. 723-733. 10.1007/s12145-021-00571-z
33
Zhou, H., Zhang, Y., Yang, L., Liu, Q., Yan, K., and Du, Y. (2019). "Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism." IEEE Access, Vol. 7, pp. 78063-78074. 10.1109/ACCESS.2019.2923006
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 55
  • No :7
  • Pages :495-504
  • Received Date :2022. 04. 12
  • Revised Date :2022. 05. 27
  • Accepted Date : 2022. 05. 30