• Research Article

    Prediction model for electric power consumption of seawater desalination based on machine learning by seawater quality change in future

    장래 해수수질 변화에 따른 머신러닝 기반 해수담수 전력비 예측 모형 개발

    Shim, Kyudaea and Ko, Young-Heeb*

    심규대, 고영희

    The electricity cost of a desalination facility was also predicted and reviewed, which allowed the proposed model to be incorporated into the …

    본 연구는 머신러닝 기반의 분석으로 해수담수화(Desalination) 시설의 전력비 예측모델의 가능성을 검토하였다. 해수담수화 주요 공정인 역삼투(Seawater Reverse Osmosis) 시설의 전력비 예측 모델을 개발하고, …

    + READ MORE
    The electricity cost of a desalination facility was also predicted and reviewed, which allowed the proposed model to be incorporated into the future design of such facilities. Input data from 2003 to 2014 of the Korea Hydrographic and Oceanographic Agency (KHOA) were used, and the structure of the model was determined using the trial and error method to analyze as well as hyperparameters such as salinity and seawater temperature. The future seawater quality was estimated by optimizing the prediction model based on machine learning. Results indicated that the seawater temperature would be similar to the existing pattern, and salinity showed a gradual decrease in the maximum value from the past measurement data. Therefore, it was reviewed that the electricity cost for seawater desalination decreased by approximately 0.80% and a process configuration was determined to be necessary. This study aimed at establishing a machine-learning-based prediction model to predict future water quality changes, reviewed the impact on the scale of seawater desalination facilities, and suggested alternatives.


    본 연구는 머신러닝 기반의 분석으로 해수담수화(Desalination) 시설의 전력비 예측모델의 가능성을 검토하였다. 해수담수화 주요 공정인 역삼투(Seawater Reverse Osmosis) 시설의 전력비 예측 모델을 개발하고, 전력비 산정에 영향을 미치는 인자를 분석하였으며, 해수 수질 중에서 선정된 수온 및 염분도 측정자료를 활용하여 검토하였다. 국립해양조사원(Korea Hydrographic and Oceanographic Agency, KHOA)의 2003년부터 2014년까지의 자료를 이용하였으며, 모형의 구조는 시행오차법(Trial & Error)으로 하이퍼파라미터를 최적화하여 머신러닝 기반의 예측 모델을 구축하고, 장래 해수 수질을 예측하였다. 해수 수온은 기존 패턴과 유사할 것으로 예측되었고, 염분도는 과거 측정자료 범위 이내로 최대값이 점차 감소되는 경향을 보여 해수담수화의 전력비가 약 0.80% 감소하는 것으로 검토되었다. 본 연구는 머신러닝 기반의 예측 모델을 구축하여 장래 수질 변화 예측하였으며, 해수 수질 변동의 영향 및 대안을 제시했다는데 의의가 있다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration

    생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임

    Kim, Sungwon, Seo, Youngmin, Zakhrouf, Mousaab, Malik, Anurag

    김성원, 서영민, 자크로프마샵, 말릭아누락

    Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in …

    주요한 수질지표 중의 하나인 생물화학적 산소요구량(BOD) 농도는 호소와 하천에서 생태학적 측면에서 관측항목으로 취급하고 있다. 본 연구에서는 대한민국의 도산 및 황지지점에서 BOD 농도예측을 …

    + READ MORE
    Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized regression neural networks, and wavelet-based random forests) to predict BOD concentration in the Dosan and Hwangji stations, South Korea. These models were assessed with the corresponding independent models (i.e., gated recurrent unit, generalized regression neural networks, and random forests). Diverse water quality and quantity indicators were implemented for developing independent and two-stage hybrid models based on several input combinations (i.e., Divisions 1-5). The addressed models were evaluated using three statistical indices including the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (CC). It can be found from results that the two-stage hybrid models cannot always enhance the predictive precision of independent models confidently. Results showed that the DWT-RF5 (RMSE = 0.108 mg/L) model provided more accurate prediction of BOD concentration compared to other optimal models in Dosan station, and the DWT-GRNN4 (RMSE = 0.132 mg/L) model was the best for predicting BOD concentration in Hwangji station, South Korea.


    주요한 수질지표 중의 하나인 생물화학적 산소요구량(BOD) 농도는 호소와 하천에서 생태학적 측면에서 관측항목으로 취급하고 있다. 본 연구에서는 대한민국의 도산 및 황지지점에서 BOD 농도예측을 위하여 새로운 이단계 하이브리드 패러다임(웨이블릿 기반 게이트 순환 유닛, 웨이블릿 기반 일반화된 회귀신경망, 그리고 웨이블릿 기반 랜덤 포레스트) 을 활용하였다. 이러한 모형들은 각 대응하는 독립모형들(게이트 순환 유닛, 일반화된 회귀신경망, 그리고 랜덤 포레스트) 과 함께 평가되었다. 다양한 수질 및 수량지표들이 여러 개의 입력조합(분류1-5) 을 기본으로 하여 독립 및 이단계 하이브리드 모형을 개발하기 위하여 구현되었다. 언급한 모형들은 root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), 그리고 correlation coefficient (CC) 를 포함한 세 개의 통계지표로서 평가되었으며, 통계결과치를 분석하면 이단계 하이브리드 모형들이 항상 대응하는 독립모형들의 예측 정도를 개선하지 않은 것으로 나타났다. 대한민국의 도산관측소에서는 DWT-RF5 (RMSE = 0.108 mg/L) 모형이 다른 최적모형과 비교하여 BOD 농도의 더 정확한 예측을 나타내었으며, 황지관측소에서는 DWT-GRNN4 (RMSE = 0.132 mg/L) 모형이 BOD 농도를 예측하는 최고의 모형이다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Optimum conditions for artificial neural networks to simulate indicator bacteria concentrations for river system

    하천의 지표 미생물 모의를 위한 인공신경망 최적화

    Bae, Hun Kyun

    배헌균

    Current water quality monitoring systems in Korea carried based on in-situ grab sample analysis. It is difficult to improve the current water …

    현행 수질모니터링은 현장에서 수질 시료를 채취하여 실험실로 이동 후 분석하는 방법에 의존하고 있다. 이러한 분석기법은 노동집약적이며 경제적으로도 많은 부담이 주어진다. 그러나 현행 …

    + READ MORE
    Current water quality monitoring systems in Korea carried based on in-situ grab sample analysis. It is difficult to improve the current water quality monitoring system, i.e. shorter sampling period or increasing sampling points, because the current systems are both cost- and labor-intensive. One possible way to improve the current water quality monitoring system is to adopt a modeling approach. In this study, a modeling technique was introduced to support the current water quality monitoring system, and an artificial neural network model, the computational tool which mimics the biological processes of human brain, was applied to predict water quality of the river. The approach tried to predict concentrations of Total coliform at the outlet of the river and this showed, somewhat, poor estimations since concentrations of Total coliform were rapidly fluctuated. The approach, however, could forecast whether concentrations of Total coliform would exceed the water quality standard or not. As results, modeling approaches is expected to assist the current water quality monitoring system if the approach is applied to judge whether water quality factors could exceed the water quality standards or not and this would help proper water resource managements.


    현행 수질모니터링은 현장에서 수질 시료를 채취하여 실험실로 이동 후 분석하는 방법에 의존하고 있다. 이러한 분석기법은 노동집약적이며 경제적으로도 많은 부담이 주어진다. 그러나 현행 모니터링시스템을 개선하기 위하여 보다 짧은 시료채취주기 또는 시료채취지점 확대 등과 같은 방법을 동원하는 것은 인력 및 경제적 측면을 고려할 때 현실적으로 거의 불가능에 가깝다. 따라서 인력 및 경제적인 측면에서 큰 부담없이 현행 수질모니터링기법을 보완할 수 있는 방안이 고려되어야 한다. 본 연구에서는 모델링 기법을 도입하여 현행 수질모니터링 시스템을 보완하고자 하였고 인공신경망모델을 적용하였다. 인공신경망은 사람의 뇌에서 일어나는 작용을 모방한 기법으로 인지할 수 있는 현상을 뇌가 종합적으로 판단하는 과정을 컴퓨터에서 구현하는 방식인데 수질 예측을 위해 이러한 인공신경망기법을 도입 하였다. 본 연구에서는 수질 인자 중 Total coliform 을 타겟으로 하여 하천말단부에서 이들 인자를 예측할 수 있는지에 중점을 두고 연구를 수행하였다. 연구결과 제한된 입력인자를 이용하여 모델을 검보정 하였음에도 불구하고 좋은 예측 성능을 보였다. 따라서 본 연구에서 사용된 기법을 근거로 수질상태를 사전에 예측함으로 수계 관리를 수행한다면 현 수질모니터링 시스템 보완에 큰 도움일 될 것으로 기대된다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Water level prediction in Taehwa River basin using deep learning model based on DNN and LSTM

    DNN 및 LSTM 기반 딥러닝 모형을 활용한 태화강 유역의 수위 예측

    Lee, Myungjin, Kim, Jongsung, Yoo, Younghoon, Kim, Hung Soo, Kim, Sam Eun, Kim, Soojun

    이명진, 김종성, 유영훈, 김형수, 김삼은, 김수전

    Recently, the magnitude and frequency of extreme heavy rains and localized heavy rains have increased due to abnormal climate, which caused increased …

    최근 이상 기후로 인해 극한 호우 및 국지성 호우의 규모 및 빈도가 증가하여 하천 주변의 홍수 피해가 증가하고 있다. 이에 따라 하천 …

    + READ MORE
    Recently, the magnitude and frequency of extreme heavy rains and localized heavy rains have increased due to abnormal climate, which caused increased flood damage in river basin. As a result, the nonlinearity of the hydrological system of rivers or basins is increasing, and there is a limitation in that the lead time is insufficient to predict the water level using the existing physical-based hydrological model. This study predicted the water level at Ulsan (Taehwagyo) with a lead time of 0, 1, 2, 3, 6, 12 hours by applying deep learning techniques based on Deep Neural Network (DNN) and Long Short-Term Memory (LSTM) and evaluated the prediction accuracy. As a result, DNN model using the sliding window concept showed the highest accuracy with a correlation coefficient of 0.97 and RMSE of 0.82 m. If deep learning-based water level prediction using a DNN model is performed in the future, high prediction accuracy and sufficient lead time can be secured than water level prediction using existing physical-based hydrological models.


    최근 이상 기후로 인해 극한 호우 및 국지성 호우의 규모 및 빈도가 증가하여 하천 주변의 홍수 피해가 증가하고 있다. 이에 따라 하천 또는 유역 내 수문학적 시스템의 비선형성이 증가하고 있으며, 기존의 물리적 기반의 수문 모형을 활용하여 홍수위를 예측하기에는 선행시간이 부족한 한계점이 존재한다. 본 연구에서는 Deep Neural Network (DNN) 및 Long Short-Term Memory (LSTM)기반의 딥러닝 기법을 적용하여 울산시(태화교) 지점의 수위를 0, 1, 2, 3, 6, 12시간에 대해 선행 예측을 수행하였고 예측 정확도를 비교 분석하였다. 그 결과 sliding window 개념을 적용한 DNN 모형이 선행시간 12시간까지 상관계수 0.97, RMSE 0.82 m로 가장 높은 정확도를 보이고 있음을 확인하였다. 향후 DNN 모형을 활용하여 딥러닝 기반의 수위 예측을 수행한다면 기존의 물리적 모형을 통한 홍수위 예측보다 향상된 예측 정확도와 충분한 선행시간을 확보할 수 있을 것으로 판단된다.

    - COLLAPSE
    31 December 2021
  • Research Article

    A study on the development of quality control algorithm for internet of things (IoT) urban weather observed data based on machine learning

    머신러닝기반의 사물인터넷 도시기상 관측자료 품질검사 알고리즘 개발에 관한 연구

    Lee, Seung Woon, Jung, Seung Kwon

    이승운, 정승권

    In addition to the current quality control procedures for the weather observation performed by the Korea Meteorological Administration (KMA), this study proposes …

    본 연구에서는 기상청에서 수행하는 기존의 기상 관측에 대한 품질관리 절차 이외에 향후 스마트시티 등에서 활용될 수 있는 머신러닝 기반의 Internet of Things …

    + READ MORE
    In addition to the current quality control procedures for the weather observation performed by the Korea Meteorological Administration (KMA), this study proposes quality inspection standards for Internet of Things (IoT) urban weather observed data based on machine learning that can be used in smart cities of the future. To this end, in order to confirm whether the standards currently set based on ASOS (Automated Synoptic Observing System) and AWS (Automatic Weather System) are suitable for urban weather, usability was verified based on SKT AWS data installed in Seoul, and a machine learning-based quality control algorithm was finally proposed in consideration of the IoT’s own data’s features. As for the quality control algorithm, missing value test, value pattern test, sufficient data test, statistical range abnormality test, time value abnormality test, spatial value abnormality test were performed first. After that, physical limit test, stage test, climate range test, and internal consistency test, which are QC for suggested by the KMA, were performed. To verify the proposed algorithm, it was applied to the actual IoT urban weather observed data to the weather station located in Songdo, Incheon. Through this, it is possible to identify defects that IoT devices can have that could not be identified by the existing KMA’s QC and a quality control algorithm for IoT weather observation devices to be installed in smart cities of future is proposed.


    본 연구에서는 기상청에서 수행하는 기존의 기상 관측에 대한 품질관리 절차 이외에 향후 스마트시티 등에서 활용될 수 있는 머신러닝 기반의 Internet of Things (IoT) 도시기상 관측 자료에 대한 품질검사 기준을 제안한다. 현재 기상청에서 종관기상관측(Automated Synoptic Observing System, ASOS)과 방재기상관측(Automatic Weather System, AWS) 기반으로 설정한 기준이 도시기상에 적합한지 확인하기 위하여 서울시에 설치된 SKT AWS 자료를 기반으로 사용성을 검증하였고, IoT 자체의 데이터가 가지는 특성을 고려하여 최종적으로 머신러닝 기반의 품질검사 알고리즘을 제안하였다. 품질검사 방법으로는 IoT 기기 자체에 대한 결측값 검사, 값 패턴 검사, 충분 데이터 검사, 통계적 범위 이상 검사, 시간값 이상 검사, 공간값 이상 검사를 먼저 수행하고, 기상청에서 제시하고 있는 기상 관측에 대한 품질검사인 물리한계검사, 단계검사, 지속성 검사, 기후범위 검사, 내적 일치성 검사를 5가지 기상요소에 대하여 각각 수행하였다. 제안한 알고리즘의 검증을 위하여 인천광역시 송도에 위치한 관측소에 실제 IoT 도시기상관측 데이터에 이를 적용하였다. 이를 통해 기존의 기상청 QC로는 확인할 수 없었던 IoT 기기가 가질 수 있는 결함을 확인할 수 있고, 알고리즘에 대한 검증을 진행하여 향후 스마트시티에 설치될 IoT 기상관측기기에 대한 품질검사 방법을 제안한다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Comparative analysis of linear model and deep learning algorithm for water usage prediction

    물 사용량 예측을 위한 선형 모형과 딥러닝 알고리즘의 비교 분석

    Kim, Jongsung, Kim, DongHyun, Wang, Wonjoon, Lee, Haneul, Lee, Myungjin, Kim, Hung Soo

    김종성, 김동현, 왕원준, 이하늘, 이명진, 김형수

    It is an essential to predict water usage for establishing an optimal supply operation plan and reducing power consumption. However, the water …

    물 사용량 예측은 최적의 용수 공급 운영 방안을 수립하고 전력 소비량 절감을 위하여 꼭 필요한 과정이라고 할 수 있다. 그러나 수용가 단위의 …

    + READ MORE
    It is an essential to predict water usage for establishing an optimal supply operation plan and reducing power consumption. However, the water usage by consumer has a non-linear characteristics due to various factors such as user type, usage pattern, and weather condition. Therefore, in order to predict the water consumption, we proposed the methodology linking various techniques that can consider non-linear characteristics of water use and we called it as KWD framework. Say, K-means (K) cluster analysis was performed to classify similar patterns according to usage of each individual consumer; then Wavelet (W) transform was applied to derive main periodic pattern of the usage by removing noise components; also, Deep (D) learning algorithm was used for trying to do learning of non-linear characteristics of water usage. The performance of a proposed framework or model was analyzed by comparing with the ARMA model, which is a linear time series model. As a result, the proposed model showed the correlation of 92% and ARMA model showed about 39%. Therefore, we had known that the performance of the proposed model was better than a linear time series model and KWD framework could be used for other nonlinear time series which has similar pattern with water usage. Therefore, if the KWD framework is used, it will be possible to accurately predict water usage and establish an optimal supply plan every the various event.


    물 사용량 예측은 최적의 용수 공급 운영 방안을 수립하고 전력 소비량 절감을 위하여 꼭 필요한 과정이라고 할 수 있다. 그러나 수용가 단위의 물 사용량은 용도, 사용자의 패턴, 날씨 등의 다양한 요인으로 인해 변화하는 비선형적 특성을 지니고 있다. 따라서 본 연구에서는 비선형적인 수용가 단위의 물 사용량을 예측하기 위하여 다양한 기법들을 연계한 KWD 프레임워크를 제안하고자 하였다. 즉, 먼저 개별 수용가 마다 용도에 따른 유사한 패턴을 파악하기 위해 K-means (K) 군집분석을 수행하였고, 잡음성분을 제거함으로써 핵심적인 주기패턴을 파악하기 위해 Wavelet (W) 방법을 적용하였다. 또한 비선형적 특성을 학습시키기 위해 Deep learning (D) 알고리즘을 적용하였다. 그리고 기존의 선형 시계열 모형인 ARMA 모형과 비교하여 KWD 프레임워크의 성능을 분석하였다. 그 결과 제안된 모형의 상관성은 92%, ARMA 모형은 약 39%로 KWD 프레임워크가 2배 이상의 성능을 가지는 것으로 분석되었다. 따라서 본 연구에서 제안한 방법을 활용할 경우 정확한 물 사용량 예측이 가능해질 것이며, 상황에 따른 최적의 공급 방안을 수립할 수 있을 것이다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Application of deep learning method for decision making support of dam release operation

    댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가

    Jung, Sungho, Le, Xuan Hien, Kim, Yeonsu, Choi, Hyungu, Lee, Giha

    정성호, 레수안히엔, 김연수, 최현구, 이기하

    The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based …

    기후변화에 따른 집중호우, 태풍 등의 발생빈도의 증가로 인하여 댐 운영의 고도화가 요구되고 있다. 일반적으로 댐 운영의 경우 강우예측, 강우-유출, 홍수추적 등 다양한 …

    + READ MORE
    The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.


    기후변화에 따른 집중호우, 태풍 등의 발생빈도의 증가로 인하여 댐 운영의 고도화가 요구되고 있다. 일반적으로 댐 운영의 경우 강우예측, 강우-유출, 홍수추적 등 다양한 수리수문학적 요소들을 반영하여 수행되나 기 계획된 특정 규칙에 기반한 댐 운영 모형의 경우, 때때로 개별 모듈들의 불확실성과 복합적인 인자들로 인하여 댐의 방류량을 능동적으로 제어하는데 제약이 있을 수 있다. 본 연구는 남강댐 직하류 홍수피해 예방을 위하여 댐의 방류량 결정 등 효율적인 댐 운영을 지원하기 위해 딥러닝 기반 LSTM (Long Short-Term Memory) 모형을 구축하고, 선행시간별 댐직하류 수위예측 정확도를 분석하는 것을 목적으로 한다. LSTM 모형의 입력자료는 댐 운영에 사용되는 기초자료 및 하류 장대동 수위관측소의 수위 자료를 시 단위로 2009년부터 2021년 7월까지 수집하였다. 2009년부터 2018년 자료는 모형의 학습과 검증 및 2019년부터 2021년 7월 자료는 선행시간을 7개(1 h, 3 h, 6 h, 9 h, 12 h, 18 h, 24 h)로 구분하여 관측 수위와 예측 수위를 비교·분석하였다. 그 결과, 선행시간 1시간의 예측결과는 평균적으로 MAE가 0.01 m, RMSE가 0.015 m, NSE가 0.99 로 관측 수위에 매우 근접한 예측 결과를 나타내었다. 또한, 선행시간이 길어질수록 예측 정확도는 근소하게 감소하였지만, 관측 수위의 시간적 패턴을 유사하게 안정적으로 예측하는 것으로 분석되었다. 따라서 수리수문학적 비선형의 복잡한 자료간의 특징을 자동으로 추출하여 예측 자료를 생산하는 LSTM 모형은 댐 방류량 의사결정에 있어 활용이 가능할 것으로 판단된다.

    - COLLAPSE
    31 December 2021
  • Research Article

    A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT)

    LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가

    Choi, Jung-Ryel, An, Sung-Wook, Choi, Jin-Young, Kim, Byung-Sik

    최정렬, 안성욱, 최진영, 김병식

    Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties …

    지구온난화로 인해 발생한 기후변화는 한반도의 홍수, 가뭄 등의 발생빈도를 증가시켰으며, 이로 인해 인적, 물적 피해가 증가한 것으로 나타났다. 수재해 대비 및 대응을 …

    + READ MORE
    Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.


    지구온난화로 인해 발생한 기후변화는 한반도의 홍수, 가뭄 등의 발생빈도를 증가시켰으며, 이로 인해 인적, 물적 피해가 증가한 것으로 나타났다. 수재해 대비 및 대응을 위해서는 국가 차원의 수자원 관리 계획 수립이 필요하며, 유역 단위 수자원 관리를 위해서는 장기간 관측된 유량 자료를 이용하여 도출된 유량지속곡선이 필요하다. 전통적으로 수자원 분야에서 유량지속곡선을 도출하기 위하여 물리적 기반의 강우-유출 모형이 많이 사용되고 있으며, 최근에는 데이터 기반의 딥러닝 기법을 이용한 유출량 예측 기법에 관한 연구가 진행된 바 있다. 물리적 기반의 모형은 수문학적으로 신뢰도 높은 결과를 도출할 수 있으나, 사용자의 높은 이해도가 요구되며, 모형 구동 시간이 오래 걸릴 수 있는 단점이 있다. 데이터 기반의 딥러닝 기법의 경우 입력 자료가 간단하며, 모형 구동 시간이 비교적 짧으나 입력 및 출력 자료 간의 관계가 블랙박스로 처리되어 수리·수문학적 특성을 반영할 수 없는 단점이 있다. 본 연구에서는 물리적 기반 모형으로 국내외에서 적용성이 검증된 Soil Water Assessment Tool (SWAT)의 매개변수 보정(Calibration)을 통해 장기간의 결측치 없는 데이터를 산출하고, 이를 데이터 기반 딥러닝 기법인 Long Short-term Memory (LSTM)의 훈련(Training) 데이터로 활용하였다. 시계열 데이터 분석 결과 검·보정 전체 기간(’07-’18) 동안 Nash-Sutcliffe Efficiency (NSE)와 적합도 비교를 위한 결정계수는 각각 0.04, 0.03 높게 도출되어 모형에서 도출된 SWAT의 결과가 LSTM보다 전반적으로 우수한 것으로 나타났다. 또한, 모형에서 도출된 연도별 시계열 자료를 내림차순하여 산정된 유량지속곡선과 관측유량 기반의 유량지속곡선과 비교한 결과 NSE는 SWAT과 LSTM 각각 0.95, 0.91로 나타났으며, 결정계수는 0.96, 0.92로 두 모형 모두 우수한 성능을 보였다. LSTM 모형의 경우 저유량 부분 모의의 정확도 개선이 필요하나, 방대한 입력 자료로 인해 모형 구축 및 구동 시간이 오래 걸리는 대유역과 입력 자료가 부족한 미계측 유역의 유량지속곡선 산정 등에 활용성이 높을 것으로 판단된다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Real-time flood prediction applying random forest regression model in urban areas

    랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측

    Kim, Hyun Il, Lee, Yeon Su, Kim, Byunghyun

    김현일, 이연수, 김병현

    Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information …

    불안정한 기후와 함께 나타나는 국지적 집중호우로 인한 도시 침수는 끊임없이 발생하고 있으나, 강우량을 포함한 기상정보 현황 또는 예보정보를 활용하여 공간적인 도시홍수 예측정보를 …

    + READ MORE
    Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.


    불안정한 기후와 함께 나타나는 국지적 집중호우로 인한 도시 침수는 끊임없이 발생하고 있으나, 강우량을 포함한 기상정보 현황 또는 예보정보를 활용하여 공간적인 도시홍수 예측정보를 제공할 수 있는 체계는 아직 마련되지 못한 상황이다. 공간적인 홍수정보는 하천의 제방, 도시 하수관거의 통수능, 저류지, 펌프시설과 같은 구조물적 대책에 어려움이 있을 시 발생할 수 있는 최악의 홍수상황을 미리 파악함으로써 피해를 최소화하는데 직접적인 영향을 미칠 수 있다. 이에 본 연구에서는 기상청에서 제공되는 강수량, 도시 유역에 대한 2차원 침수해석 결과, 그리고 기계학습 모형 중 하나인 랜덤포레스트 회귀모형을 활용하여 실시간으로 도시유역에 대한 침수지도를 예측할 수 있는 방법론을 제시하고자 한다. 연구유역은 내수침수가 빈번하게 발생하는 울산시 우정태화지구로 선정하였다. 지속시간 6시간의 총강우량 50 mm, 80 mm 그리고 110 mm 대한 랜덤포레스트 회귀분석 예측 침수면적과 검보정된 2차원 물리모형의 침수해석 결과 비교시 각각 63%, 80%, 그리고 67%의 적합도를 보여주어, 빠른 시간안에 발생하는 도시 침수에 대한 대응, 대피를 위한 기초자료로 활용될 수 있을 것으로 판단된다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Assessment of artificial neural network model for real-time dam inflow prediction

    실시간 댐 유입량 예측을 위한 인공신경망 모형의 활용성 평가

    Heo, Jae-Yeong, Bae, Deg-Hyo

    허재영, 배덕효

    In this study, the artificial neural network model is applied for real-time dam inflow prediction and then evaluated for the prediction lead …

    본 연구에서는 국내 주요 댐 상류 유역을 대상으로 장기간 시단위 수문자료를 활용하여 실시간 댐 유입량 예측을 위한 인공신경망 모형의 선행 1, 3, …

    + READ MORE
    In this study, the artificial neural network model is applied for real-time dam inflow prediction and then evaluated for the prediction lead times (1, 3, 6 hr) in dam basins in Korea. For the training and testing the model, hourly precipitation and inflow are used as input data according to average annual inflow. The results show that the model performance for up to 6 hour is acceptable because the NSE is 0.57 to 0.79 or higher. Totally, the predictive performance of the model in dry seasons is weaker than the performance in wet seasons, and this difference in performance increases in the larger basin. For the 6 hour prediction lead time, the model performance changes as the sequence length increases. These changes are significant for the dry season with increasing sequence length compared to the wet season. Also, with increasing the sequence length, the prediction performance of the model improved during the dry season. Comparison of observed and predicted hydrographs for flood events showed that although the shape of the prediction hydrograph is similar to the observed hydrograph, the peak flow tends to be underestimated and the peak time is delayed depending on the prediction lead time.


    본 연구에서는 국내 주요 댐 상류 유역을 대상으로 장기간 시단위 수문자료를 활용하여 실시간 댐 유입량 예측을 위한 인공신경망 모형의 선행 1, 3, 6시간별 예측유입량을 산정 및 평가하였다. 이를 위해, 각 유역별 15년의 시단위 강수 및 유입량 자료를 활용하였으며 연도별 평균 유입량을 고려하여 데이터세트를 구성하였다. 각 대상유역에 대한 선행시간별 예측 성능은 NSE 0.57∼0.79 이상으로써 비교적 양호한 성능을 나타내었다. 유역면적이 클수록 이수기의 예측 성능이 낮은 것으로 확인되었으며 홍수기 예측성능과의 편차가 증가하는 것으로 확인되었다. 선행 6시간 예측에 대해 입력자료의 과거길이에 따른 성능 변화는 홍수기보다 이수기에서 큰 차이를 보이며 과거길이가 증가할수록 이수기의 성능이 향상되는 것으로 나타났다. 주요 홍수 사상에 대한 예측 수문곡선은 관측과 비교하여 수문곡선의 형태는 유사한 것으로 나타났다. 다만, 선행시간에 따라 첨두시간의 지연 및 유량의 과소 추정되는 경향이 있으며 이에 대한 개선이 필요함을 확인하였다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Comparative analysis of activation functions of artificial neural network for prediction of optimal groundwater level in the middle mountainous area of Pyoseon watershed in Jeju Island

    제주도 표선유역 중산간지역의 최적 지하수위 예측을 위한 인공신경망의 활성화함수 비교분석

    Shin, Mun-Ju, Kim, Jin-Woo, Moon, Duk-Chul, Lee, Jeong-Han, Kang, Kyung Goo

    신문주, 김진우, 문덕철, 이정한, 강경구

    The selection of activation function has a great influence on the groundwater level prediction performance of artificial neural network (ANN) model. In …

    활성화함수의 선택은 인공신경망(Artificial Neural Network, ANN) 모델의 지하수위 예측성능에 큰 영향을 미친다. 특히 제주도의 중산간 지역과 같이 지하수위의 변동폭이 크고 변동양상이 복잡한 …

    + READ MORE
    The selection of activation function has a great influence on the groundwater level prediction performance of artificial neural network (ANN) model. In this study, five activation functions were applied to ANN model for two groundwater level observation wells in the middle mountainous area of the Pyoseon watershed in Jeju Island. The results of the prediction of the groundwater level were compared and analyzed, and the optimal activation function was derived. In addition, the results of LSTM model, which is a widely used recurrent neural network model, were compared and analyzed with the results of the ANN models with each activation function. As a result, ELU and Leaky ReLU functions were derived as the optimal activation functions for the prediction of the groundwater level for observation well with relatively large fluctuations in groundwater level and for observation well with relatively small fluctuations, respectively. On the other hand, sigmoid function had the lowest predictive performance among the five activation functions for training period, and produced inappropriate results in peak and lowest groundwater level prediction. The ANN-ELU and ANN-Leaky ReLU models showed groundwater level prediction performance comparable to that of the LSTM model, and thus had sufficient potential for application. The methods and results of this study can be usefully used in other studies.


    활성화함수의 선택은 인공신경망(Artificial Neural Network, ANN) 모델의 지하수위 예측성능에 큰 영향을 미친다. 특히 제주도의 중산간 지역과 같이 지하수위의 변동폭이 크고 변동양상이 복잡한 경우 적절한 지하수위 예측을 위해서는 다양한 활성화함수의 비교분석을 통한 최적의 활성화함수 선택이 반드시 필요하다. 본 연구에서는 지하수위의 변동폭이 크고 변동양상이 복잡한 제주도 표선유역 중산간지역 2개 지하수위 관측정을 대상으로 5개의 활성화함수(sigmoid, hyperbolic tangent (tanh), Rectified Linear Unit (ReLU), Leaky Rectified Linear Unit (Leaky ReLU), Exponential Linear Unit (ELU))를 ANN 모델에 적용하여 지하수위 예측결과를 비교 및 분석하고 최적 활성화함수를 도출하였다. 그리고 최근 널리 사용되고 있는 순환신경망 모델인 Long Short-Term Memory (LSTM) 모델의 결과와 비교분석하였다. 분석결과 지하수위 변동폭이 상대적으로 큰 관측정과 상대적으로 작은 관측정에 대한 지하수위 예측에 대해서는 각각 ELU와 Leaky ReLU 함수가 최적의 활성화함수로 도출되었다. 반면 sigmoid 함수는 학습기간에 대해 5개 활성화함수 중 예측성능이 가장 낮았으며 첨두 및 최저 지하수위 예측에서 적절하지 못한 결과를 도출하였다. 따라서 ANN-sigmoid 모델은 가뭄기간의 지하수위 예측을 통한 지하수자원 관리목적으로 사용할 경우 주의가 필요하다. ANN-ELU와 ANN-Leaky ReLU 모델은 LSTM 모델과 대등한 지하수위 예측성능을 보여 활용가능성이 충분히 있으며 LSTM 모델은 ANN 모델들 보다 예측성능이 높아 인공지능 모델의 예측성능 비교분석 시 참고 모델로 활용될 수 있다. 마지막으로 학습기간의 정보량에 따라 학습기간의 지하수위 예측성능이 검증 및 테스트 기간의 예측성능보다 낮을 수 있다는 것을 확인하였으며, 관측지하수위의 변동폭이 크고 변동양상이 복잡할수록 인공지능 모델별 지하수위 예측능력의 차이는 커졌다. 본 연구에서 제시한 5개의 활성화함수를 적용한 연구방법 및 비교분석 결과는 지하수위 예측뿐만 아니라 일단위 하천유출량 및 시간단위 홍수량 등 지표수 예측을 포함한 다양한 연구에 유용하게 사용될 수 있다.

    - COLLAPSE
    31 December 2021
  • Research Article

    A case study on an optimal analysis technique of primary measurements for safety management of fill dam

    필댐의 안전관리를 위한 주요 계측 데이터의 최적 분석기법에 대한 사례 연구

    Jeon, Hyeoncheol, Yun, Seong-Kyu, Kim, Jiseong, Im, En-Sang, Kang, Gichun

    전현철, 윤성규, 김지성, 임은상, 강기천

    In this study, statistical analysis was performed to suggest the optimal analysis techniques for the main measuring instruments of the fill dam, …

    본 연구에서는 필댐의 주요계측기인 침투수량계, 정상침하계, 간극수압계의 최적 분석기법을 제안하기 위해 통계분석을 수행하였고, 이와 더불어 저수위, 강우량 데이터와의 상관관계 분석을 수행하였다. 계측기별 …

    + READ MORE
    In this study, statistical analysis was performed to suggest the optimal analysis techniques for the main measuring instruments of the fill dam, such as seepage, crest settlement, and porewater pressure gauge. In addition, correlation analysis with water level and rainfall data was performed. Based on the results of descriptive statistical analysis for each instrument, porewater pressure gauges could be classified into 3 groups or 2 groups through principal component analysis, In the case of the group having a high correlation with the water level instrument, the correlation between the gauges was also large. In the case of seepage instrument, the distribution showed an extremely asymmetric distribution, so for quantitative analysis, the average seepage during non-precipitation and precipitation could be estimated through decision tree analysis. In the case of the crest settlement instrument, the correlation analysis showed that the correlation between the gauges was large, but the relationship with the water level instrument did not show a significant linear relationship, so EMD analysis was performed to analyze it in more detail. It is judged that principal component analysis, decision tree analysis, and data filtering method can be applied to analyze the behavior of pore water pressure meters, seepage, and crest settlement instrument as major measurement items of fill dam.


    본 연구에서는 필댐의 주요계측기인 침투수량계, 정상침하계, 간극수압계의 최적 분석기법을 제안하기 위해 통계분석을 수행하였고, 이와 더불어 저수위, 강우량 데이터와의 상관관계 분석을 수행하였다. 계측기별 기술통계 분석 결과를 토대로 간극수압계는 주성분 분석을 통해 3그룹 또는 2그룹으로 분류가 가능하였고, 저수위가 상관성이 큰 그룹의 경우는 계측기 간의 상관성도 크게 나타났다. 침투수량의 경우는 극심한 비대칭 분포를 보이고 있어 정량적 분석을 위해 분류나무 분석을 통해 무강수, 강수시의 평균 침투수량을 추정할 수 있었다. 정상침하계의 경우는 상관분석 결과 계측기간의 상관성은 큰 것으로 나타났지만, 저수위계와의 관계에서는 유의미한 선형관계를 나타내지 못하여 이를 보다 상세히 분석하기 위해 EMD분석을 수행 하였다. 필댐의 주요 계측항목으로 간극수압계, 침투수량계, 정상침하계의 거동분석을 위해서는 각각 주성분 분석, 분류나무 분석, 데이터 필터 기법을 적용이 가능할 것으로 판단되며, 향후 유사한 계측항목에 적용이 가능할 것으로 판단된다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Prediction of cyanobacteria harmful algal blooms in reservoir using machine learning and deep learning

    머신러닝과 딥러닝을 이용한 저수지 유해 남조류 발생 예측

    Kim, Sang-Hoon, Park, Jun Hyung, Kim, Byunghyun

    김상훈, 박준형, 김병현

    In relation to the algae bloom, four types of blue-green algae that emit toxic substances are designated and managed as harmful Cyanobacteria, …

    녹조 현상과 관련하여 독성물질을 배출하는 남조류 4종의 경우 유해 남조류로 지정하여 관리하고 있으며, 물리적인 모형을 이용한 예측 정보도 함께 발표하고 있다. 그러나 …

    + READ MORE
    In relation to the algae bloom, four types of blue-green algae that emit toxic substances are designated and managed as harmful Cyanobacteria, and prediction information using a physical model is being also published. However, as algae are living organisms, it is difficult to predict according to physical dynamics, and not easy to consider the effects of numerous factors such as weather, hydraulic, hydrology, and water quality. Therefore, a lot of researches on algal bloom prediction using machine learning have been recently conducted. In this study, the characteristic importance of water quality factors affecting the occurrence of Cyanobacteria harmful algal blooms (CyanoHABs) were analyzed using the random forest (RF) model for Bohyeonsan Dam and Yeongcheon Dam located in Yeongcheon-si, Gyeongsangbuk-do and also predicted the occurrence of harmful blue-green algae using the machine learning and deep learning models and evaluated their accuracy. The water temperature and total nitrogen (T-N) were found to be high in common, and the occurrence prediction of CyanoHABs using artificial neural network (ANN) also predicted the actual values closely, confirming that it can be used for the reservoirs that require the prediction of harmful cyanobacteria for algal management in the future.


    녹조 현상과 관련하여 독성물질을 배출하는 남조류 4종의 경우 유해 남조류로 지정하여 관리하고 있으며, 물리적인 모형을 이용한 예측 정보도 함께 발표하고 있다. 그러나 조류는 살아 있는 생명체로 물리 역학에 따른 예측에 어려움이 있으며, 기상, 수리․수문, 수질 등 수많은 인자에 의한 영향을 고려하기가 쉽지 않다. 따라서, 최근 머신러닝을 이용한 녹조발생 예측 연구가 많이 진행되고 있다. 본 연구에서는 경북 영천에 소재한 보현산댐과 영천댐을 대상으로 랜덤 포레스트 모형을 이용하여 유해남조류 발생에 영향을 미치는 수질인자의 특성중요도를 분석해 보았으며, 이 중 가장 높은 특성중요도를 나타낸 수온을 이용하여 머신러닝과 딥러닝을 이용하여 유해남조류 발생을 예측하고 그 정확성을 확인하였다. 특성중요도 분석 결과, 수온과 총질소(T-N)이 공통적으로 높게 나왔으며, 인공신경망(ANN)을 이용한 유해남조류 발생예측에서도 실제와 근접한 값이 예측되어 앞으로 녹조관리를 위해 유해남조류 예측이 필요한 저수지의 경우 이를 활용할 수 있음을 확인하였다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Estimation of regional flow duration curve applicable to ungauged areas using machine learning technique

    머신러닝 기법을 이용한 미계측 유역에 적용 가능한 지역화 유황곡선 산정

    Jeung, Se Jin, Lee, Seung Pil, Kim, Byung Sik

    정세진, 이승필, 김병식

    Low flow affects various fields such as river water supply management and planning, and irrigation water. A sufficient period of flow data …

    Low flow는 하천수의 공급관리 및 계획, 관개용수 등 다양한 분야에 영향을 미친다. 이러한 유황곡선을 산정하기 위해서는 30년 이상의 충분한 기간의 유량자료의 확보가 …

    + READ MORE
    Low flow affects various fields such as river water supply management and planning, and irrigation water. A sufficient period of flow data is required to calculate the Flow Duration Curve. However, in order to calculate the Flow Duration Curve, it is essential to secure flow data for more than 30 years. However, in the case of rivers below the national river unit, there is no long-term flow data or there are observed data missing for a certain period in the middle, so there is a limit to calculating the Flow Duration Curve for each river. In the past, statistical-based methods such as Multiple Regression Analysis and ARIMA models were used to predict sulfur in the unmeasured watershed, but recently, the demand for machine learning and deep learning models is increasing. Therefore, in this study, we present the DNN technique, which is a machine learning technique that fits the latest paradigm. The DNN technique is a method that compensates for the shortcomings of the ANN technique, such as difficult to find optimal parameter values ​​in the learning process and slow learning time. Therefore, in this study, the Flow Duration Curve applicable to the unmeasured watershed is calculated using the DNN model. First, the factors affecting the Flow Duration Curve were collected and statistically significant variables were selected through multicollinearity analysis between the factors, and input data were built into the machine learning model. The effectiveness of machine learning techniques was reviewed through statistical verification.


    Low flow는 하천수의 공급관리 및 계획, 관개용수 등 다양한 분야에 영향을 미친다. 이러한 유황곡선을 산정하기 위해서는 30년 이상의 충분한 기간의 유량자료의 확보가 필수적이다. 하지만 국가하천 단위 이하의 하천의 경우 장기간의 유량자료가 없거나 중간에 일정기간 동안 결측된 관측소가 있어 하천별 유황 곡선을 산정하기에 한계가 있다. 이에 과거에는 미계측 유역의 유황을 예측하기 위해 다중회귀분석(Multiple Regression Analysis), ARIMA 모형 등 통계학적 기반의 기법들을 사용하였지만, 최근에는 머신러닝, 딥러닝 모형의 수요가 증가하고 있다. 이에 본 연구에서는 최신 패러다임에 맞는 머신러닝 기법인 DNN기법을 제시한다. DNN기법은 ANN기법의 단점인 학습과정에서 최적 매개변수 값을 찾기 어렵고, 학습시간이 느린 단점을 보완한 방법이다. 따라서 본연구에서는 DNN 모형을 이용하여 미계측 유역에 적용 가능한 유황곡선을 산정하고자 한다. 먼저, 유황곡선에 영향을 미치는 인자들을 수집하고 인자들 간의 다중공선성 분석을 통해 통계적으로 유의한 변수를 선정하여, 머신러닝 모형에 입력자료를 구축하였다. 통계적 검증을 통해 머신러닝 기법의 효용성을 검토하였다.

    - COLLAPSE
    31 December 2021
  • Research Article

    Role of unstructured data on water surface elevation prediction with LSTM: case study on Jamsu Bridge, Korea

    LSTM 기법을 활용한 수위 예측 알고리즘 개발 시 비정형자료의 역할에 관한 연구: 잠수교 사례

    Lee, Seung Yeon, Yoo, Hyung Ju, Lee, Seung Oh

    이승연, 유형주, 이승오

    Recently, local torrential rain have become more frequent and severe due to abnormal climate conditions, causing a surge in human and properties …

    최근 이상기후로 인한 국지성호우가 잦아져 하천변 사회기반시설을 포함한 인적·물적 피해가 급증하고 있다. 본 연구에서는 해당 시설들의 침수 피해를 예측·방지하고자 기계학습 중 시계열자료에 …

    + READ MORE
    Recently, local torrential rain have become more frequent and severe due to abnormal climate conditions, causing a surge in human and properties damage including infrastructures along the river. In this study, water surface elevation prediction algorithm was developed using the LSTM (Long Short-term Memory) technique specialized for time series data among Machine Learning to estimate and prevent flooding of the facilities. The study area is Jamsu Bridge, the study period is 6 years (2015~2020) of June, July and August and the water surface elevation of the Jamsu Bridge after 3 hours was predicted. Input data set is composed of the water surface elevation of Jamsu Bridge (EL.m), the amount of discharge from Paldang Dam (m3/s), the tide level of Ganghwa Bridge (cm) and the number of tweets in Seoul. Complementary data were constructed by using not only structured data mainly used in precedent research but also unstructured data constructed through wordcloud, and the role of unstructured data was presented through comparison and analysis of whether or not unstructured data was used. When predicting the water surface elevation of the Jamsu Bridge, the accuracy of prediction was improved and realized that complementary data could be conservative alerts to reduce casualties. In this study, it was concluded that the use of complementary data was relatively effective in providing the user’s safety and convenience of riverside infrastructure. In the future, more accurate water surface elevation prediction would be expected through the addition of types of unstructured data or detailed pre-processing of input data.


    최근 이상기후로 인한 국지성호우가 잦아져 하천변 사회기반시설을 포함한 인적·물적 피해가 급증하고 있다. 본 연구에서는 해당 시설들의 침수 피해를 예측·방지하고자 기계학습 중 시계열자료에 특화된 LSTM(Long Short- term Memory)기법을 활용하여 수위 예측 알고리즘을 개발하였다. 연구대상지는 잠수교로 연구기간은 총 6년(2015년~2020년)의 6, 7, 8월로 3시간 후의 잠수교 수위를 예측하였다. 입력자료(Input data)는 잠수교 수위(EL.m), 팔당댐 방류량(m3/s), 강화대교 조위(cm), 서울시 트윗의 개수로 기존 연구에 주로 사용된 정형자료뿐만 아니라 워드클라우드를 통해 구축된 비정형자료도 함께 사용하여 상호 보완형 자료를 구축하고, 비정형자료 활용 유무의 비교·분석을 통해 비정형자료의 역할도 제시하였다. 잠수교의 수위 예측 시 상호 보완형의 자료가 정형자료만을 사용한 경우에 비해 예측 정확도가 향상하였는 데, 이는 인명 피해를 감소시킬 수 있는 보수적인 예/경보가 가능함을 알 수 있었다. 본 연구에서는 하천변 사회기반시설의 이용자 안전 및 편의 제공에 상호 보완형 자료의 사용이 보다 효과적이라 판단하였다. 향후에는 비정형자료의 종류를 추가하거나 입력자료의 세밀한 전처리를 통하여 더욱 정확한 수위 예측을 기대해본다.

    - COLLAPSE
    31 December 2021