Research Article
Atashi, V., Gorji, H.T., Shahabi, S.M., Kardan, R., and Lim, Y.H. (2022). "Water level forecasting using deep learning time- series analysis: A case study of Red River of the North." Water, Vol. 14, 1971.
10.3390/w14121971Bengio, Y., Simard, P., and Frasconi, P. (1994). "Learning long-term dependencies with gradient descent is difficult." IEEE Transactions on Neural Networks, Vol. 5, No. 2, pp. 157-166.
10.1109/72.27918118267787Bergstra, J., and Bengio, Y. (2012). "Random search for hyper-parameter optimization." Journal of Machine Learning Research, Vol. 13, pp. 281-305.
Cheong, T.S., Choi, C., Ye, S.J., Shin, J., Kim, S., and Koo, K.M. (2023). "Development of flood early warning frameworks for small streams in Korea." Water, Vol. 15, 1808.
10.3390/w15101808Depuru, S.S.S.R., Depuru, S.S.R., and Depuru, S. (2023). "IoT-based smart water level monitoring." Proceedings of the 2023 IEEE 20th India Council International Conference (INDICON), Hyderabad, India, pp. 1136-1142.
10.1109/INDICON59947.2023.10440795Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780.
10.1162/neco.1997.9.8.17359377276Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z. (2018). "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation." Water, Vol. 10, 1543.
10.3390/w10111543Kim, J.H. (2019). Application of FLOW-3D for simulating river hydraulics and sediment transport processes. Ph. D. Dissertation, University of Alberta, Edmonton, Alberta, Canada, pp. 15-20.
Li, W., Kiaghadi, A., and Dawson, C. (2020). "Exploring the best sequence LSTM modeling architecture for flood prediction." Neural Computing and Applications, Vol. 33, No. 11, pp. 5571-5580.
10.1007/s00521-020-05334-3Lo, S.W., Wu, J.H., Lin, F.P., and Hsu, C.H. (2015). "Visual sensing for urban flood monitoring." Sensors, Vol. 15, pp. 20006- 20029.
10.3390/s15082000626287201PMC4570407Moradi, E., Yaghoubi, B., and Shabanlou, S. (2023). "A new technique for flood routing by nonlinear Muskingum model and artificial gorilla troops algorithm." Applied Water Science, Vol. 13, 49.
10.1007/s13201-022-01844-8Ponce, V.M., and Yevjevich, V. (1978). "Muskingum-Cunge method with variable parameters." Journal of the Hydraulics Division, ASCE, Vol. 104, No. 12, pp. 1663-1667.
10.1061/JYCEAJ.0005119Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). "Dropout: A simple way to prevent neural networks from overfitting." Journal of Machine Learning Research, Vol. 15, pp. 1929-1958.
Tawalbeh, R., Alasali, F., Ghanem, Z., Alghazzawi, M., Abu-Raideh, A., and Holderbaum, W. (2023). "Innovative characterization and comparative analysis of water level sensors for enhanced early detection and warning of floods." Journal of Low Power Electronics and Applications, Vol. 13, 26.
10.3390/jlpea13020026- Publisher :KOREA WATER RESOURECES ASSOCIATION
- Publisher(Ko) :한국수자원학회
- Journal Title :Journal of Korea Water Resources Association
- Journal Title(Ko) :한국수자원학회 논문집
- Volume : 58
- No :3
- Pages :225-239
- Received Date : 2024-11-11
- Revised Date : 2025-01-31
- Accepted Date : 2025-02-03
- DOI :https://doi.org/10.3741/JKWRA.2025.58.3.225