All Issue

2025 Vol.58, Issue 3 Preview Page

Research Article

31 March 2025. pp. 209-223
Abstract
References
1

Breiman, L. (2001). "Random forests." Machine Learning, Vol. 45, pp. 5-32. doi: 10.1023/A:1010933404324

10.1023/A:1010933404324
2

Buck, S., Auffhammer, M., Soldati, H., and Sunding, D. (2020). "Forecasting residential water consumption in California: Rethinking model selection." Water Resources Research, Vol. 56, No. 1, e2018WR023965. doi: 10.1029/2018WR023965.

10.1029/2018WR023965
3

Capt, T., Mirchi, A., Kumar, S., and Walker, W.S. (2021). "Urban water demand: statistical optimization approach to modeling daily demand." Journal of Water Resources Planning and Management, Vol. 147, No. 2. doi: 10.1061/(asce)wr.1943-5452.0001315.

10.1061/(ASCE)WR.1943-5452.0001315
4

Chandrashekar, G., and Sahin, F. (2014). "A survey on feature selection methods." Computers and Electrical Engineering, Vol. 40, No. 1, pp. 16-28. doi: 10.1016/j.compeleceng.2013.11.024.

10.1016/j.compeleceng.2013.11.024
5

Chen, T., and Guestrin, C. (2016). "XGBoost: A scalable tree boosting system." KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, U.S., pp. 785-794. doi: 10.1145/2939672.2939785.

10.1145/2939672.2939785
6

Choi, S.H., and Kim, S.H. (2006). "Trend analysis of domestic water consumption depending upon the characteristics of using tap water and economical parameters." Proceeding of the Korea Water Resources Association Conference, pp.121-125.

7

Cruz-Nájera, M.A., Treviño-Berrones, M.G., Ponce-Flores, M.P., Terán-Villanueva, J.D., Castán-Rocha, J.A., Ibarra-Martínez, S., Santiago, A., and Laria-Menchaca, J. (2022). "Short time series forecasting: Recommended methods and techniques." Symmetry, Vol. 14, No. 6, 1231. doi: 10.3390/sym14061231.

10.3390/sym14061231
8

Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., and Lachhab, A., (2018). "Forecasting of demand using ARIMA model." International Journal of Engineering Business Management, Vol. 10. doi: 10.1177/1847979018808673.

10.1177/1847979018808673
9

Hariharan, J., Izadi Moud, H., Sands, K.. Capano, C., Stockinger, K., and Vowels, J. (2022). "Benchmarking drinking water consumption during construction phase." Construction Research Congress 2022, Arlington, VA, U.S., Vol. 1-A, pp. 560-568. doi: 10.1061/9780784483954.058.

10.1061/9780784483954.058
10

Kim, H.S., Lee, D.J., Park, N.S., and Jung, K.S. (2008). "Analysis on statistical characteristics of household water end-uses." Journal of the Korean Society of Civil Engineers, B, Vol. 28, No. 5B, pp. 603-14. doi: 10.12652/KSCE.2008.28.5B.603.

11

Maußner, C., Oberascher, M., Autengruber, A., Kahl, A., and Sitzenfrei, R. (2025). "Explainable artificial intelligence for reliable water demand forecasting to increase trust in predictions." Water Research, Vol. 268, 122779. doi: 10.1016/j.watres.2024.122779.

10.1016/j.watres.2024.12277939546974
12

Ministry of Environment (ME) (2014). Manual for forecasting water demand in water supply systems.

13

Nunes Carvalho, T.M., de Souza Filho, F. de A., and Porto, V.C. (2021). "Urban water demand modeling using machine learning techniques: Case study of Fortaleza, Brazil." Journal of Water Resources Planning and Management, Vol.147, No. 1, 05020026. doi: 0.1061/(ASCE)WR.1943-5452.0001310.

10.1061/(ASCE)WR.1943-5452.0001310
14

Oh, J.H., Lim, D.J., Kim, I.K., Shin, J.B., and Ryu, J.S. (2022). "Evaluation and comparison of water balance and budget forecasts considering the domestic and industrial water usage pattern." Journal of Korea Water Resources Association, Vol. 55, No. 11, pp. 941-953. doi: 10.3741/JKWRA.2022.55.11.941.

10.3741/JKWRA.2022.55.11.941
15

Pourmousavi, M., Nasrollahi, H., Najafabadi, A.A., and Kalhor, A. (2022). "Evaluating the performance of feature selection techniques and machine learning algorithms on future residential water demand." Water Supply, Vol. 22, No. 8, pp. 6833-6854. doi: 10.2166/ws.2022.243.

10.2166/ws.2022.243
16

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M.D., Muñoz-Marí, J. et al. (2019). "Inferring causation from time series in Earth system sciences." Nature Communications, Vol. 10, No. 1, 2553. doi: 10.1038/s41467-019-10105-3.

10.1038/s41467-019-10105-331201306PMC6572812
17

VanBerlo, B., Ross, M.A.S., and Hsia, D. (2021). "Univariate long-term municipal water demand forecasting." arXiv abs/ 2105.08486.

18

Xenochristou, M., Hutton, C., Hofman, J., and Kapelan, Z. (2020). "Water demand forecasting accuracy and influencing factors at different spatial scales using a gradient boosting machine." Water Resources Research, Vol. 56, No. 8, e2019WR026304. doi: 10.1029/2019WR026304.

10.1029/2019WR026304
19

Yang, M., Gao, E., Wang, G., Li, D., Zhou, W. and Zhou, X. (2024). "Medium and long-term regional water demand prediction using Harris hawks optimisation - backpropagation neural network model." Scientific Reports, Vol. 14, No. 1, 27763.

10.1038/s41598-024-78980-539533063PMC11557846
20

Yoo, S.H., and Yang, C.Y. (2005). "Analyzing the determinants of the piped water consumption in the large cities with consideration of non-response data." Economic Research, Vol. 23, No. 1, pp. 223-246.

21

Zanfei, A., Brentan, B.M., Menapace, A., Righetti, M., and Herrera, M. (2022). "Graph convolutional recurrent neural networks for water demand forecasting." Water Resources Research, Vol. 58, No. 7, e2022WR032299. doi: 10.1029/2022WR032299.

10.1029/2022WR032299
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 58
  • No :3
  • Pages :209-223
  • Received Date : 2023-10-26
  • Revised Date : 2025-01-06
  • Accepted Date : 2025-01-13