All Issue

2025 Vol.58, Issue 3

Review

31 March 2025. pp. 193-207
Abstract
References
1

Albayrak, I., Nikora, V., Miler, O., and O'Hare, M.T. (2014). "Flow- plant interactions at leaf, stem and shoot scales: drag, turbulence, and biomechanics." Aquatic Sciences, Vol. 76, No. 2, pp. 269-294.

10.1007/s00027-013-0335-2
2

Arcement, G.J., and Schneider, V.R. (1989). Guide for selecting Manning's roughness coefficients for natural channels and flood plains. U.S. Geological Survey Water-Supply Paper 2339, Washington United States Government Printing Office, Washington, D.C., U.S.

3

Bae, I., Ji, U., Järvelä, J., and Västilä, K. (2024). "Blockage effect of emergent riparian vegetation patches on river flow." Journal of Hydrology, Vol. 635, 131197.

10.1016/j.jhydrol.2024.131197
4

Baptist, M.J. (2005). Modelling floodplain biogeomorphology. PhD Dissertation, Delft University of Technology, Delft, The Netherlands.

5

Baptist, M.J., Babovic, V., Rodríguez Uthurburu, J., Keijzer, M., Uittenbogaard, R.E., Mynett, A., and Verwey, A. (2007). "On inducing equations for vegetation resistance." Journal of Hydraulic Research, Vol. 45, pp. 435-450.

10.1080/00221686.2007.9521778
6

Barnes, H.H., Jr. (1967). Roughness characteristics of natural channels. U.S. Geological Survey Water-Supply Paper 1849; Washington United States Government Printing Office, Washington, D.C., U.S.

7

Benifei, R., Solari, L., Vargas-Luna, A., Geerling, G., and Van Oorschot, M. (2015). "Effect of vegetation on floods: The case of the River Magra." E-proceedings of the 36th IAHR World Congress, The Hague, The Netherlands.

8

Chen, Z., Zhou, J., and Chen, Q. (2023). "Research and application of the calculation method of river roughness coefficient with vegetation." Water, Vol. 15, No. 14, 2638.

10.3390/w15142638
9

Cheng, N.S. (2011). "Representative roughness height of submerged vegetation." Water Resources Research, Vol. 47, W08517.

10.1029/2011WR010590
10

Chow, V.T. (1959). Open-channel hydraulics. McGraw-Hill, New York, NW, U.S.

11

Corenblit, D., Tabacchi, E., Steiger, J., and Gurnell, A.M. (2007). "Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches," Earth-Science Reviews, Vol. 84, No. 1-2, pp. 56-86.

10.1016/j.earscirev.2007.05.004
12

Cowan, W. (1956). "Estimating hydraulic roughness coefficients." Agricultural Engineering, Vol. 37, No. 7, pp. 473-475.

13

D'Ippolito, A., Calomino, F., Alfonsi, G., and Lauria, A. (2021). "Flow resistance in open channel due to vegetation at reach scale: A review." Water, Vol. 13, No. 2, 116.

10.3390/w13020116
14

D'Ippolito, A., Calomino, F., Morosini, A.F., and Gaudio, R. (2024). "Drag coefficients and water surface profiles in channels with arrays of linear rigid emergent vegetation." Journal of Hydro- environment Research, Vol. 57, pp. 27-37.

10.1016/j.jher.2024.10.001
15

D'Ippolito, A., Lauria, A., Alfonsi, G., and Calomino, F. (2019). "Investigation of flow resistance exerted by rigid emergent vegetation in open channel." Acta Geophysics, Vol. 67, No. 3, pp. 971-986.

10.1007/s11600-019-00280-8
16

De Langre, E. (2008). "Effects of wind on plants." Annual Review of Fluid Mechanics, Vol. 40, pp. 141-168.

10.1146/annurev.fluid.40.111406.102135
17

Egger, G., Politti, E., Woo, H., Cho, K., Park, M., Cho, H., Benjankar, R., Lee, N., and Lee, H. (2012). "Dynamic vegetation model as a tool for ecological impact assessments of dam operation." Journal of Hydro-Environment Research, Vol. 6, No. 2, pp. 151-161.

10.1016/j.jher.2012.01.007
18

Fathi-Maghadam, M., and Kouwen, N. (1997). "Nonrigid, nonsubmerged, vegetative roughness on floodplains." Journal of Hydraulic Engineering, Vol. 123, No. 1, pp. 51-57.

10.1061/(ASCE)0733-9429(1997)123:1(51)
19

Folke, F., Kopmann, R., Dalledonne, G., and Attieh, M. (2019). "Comparison of different vegetation models using TELEMAC- 2D." XXVIth TELEMAC-MASCARET User Conference, Toulouse, France.

20

Freeman, G.E., Rahmeyer, W.J., and Copeland, R. (2000). Determination of resistance due to shrubs and woody vegetation. ERDC/CHL TR-00-25; Engineer Research and Development Center, US Army Corps of Engineers, Washington, D.C., U.S.

10.21236/ADA383997
21

George, J.A., Jr., and Schneider, V.R. (1989). Guide for selecting manning's roughness coefficients for natural channels and flood plains. U.S. Geological Survey Water-Supply Paper 2339, Washington United States Government Printing Office, Washington, D.C., U.S.

22

Green, J.C. (2005). "Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes." River Research and Application, Vol. 21, pp. 671-686.

10.1002/rra.854
23

Gwinn, W.R., and Ree, W.O. (1980). "Maintenance effects on the hydraulic properties of a vegetation lined channel." Transaction of the ASAE, Vol. 23, pp. 636-642.

10.13031/2013.34637
24

Huthoff, F., Augustijn, D., and Hulscher, S.J. (2007). "Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation." Water Resources Research, Vol. 43, No. 6, W06413.

10.1029/2006WR005625
25

Ishikawa, Y., Mizuhara, K., and Ashida, S. (2000). "Effect of density of trees on drag exerted on trees in river channels." Journal of Forestry, Vol. 5, pp. 271-279.

10.1007/BF02767121
26

Ishikawa, Y., Sakamoto, T., and Mizuhara, K. (2003). "Effect of density of riparian vegetation on effective tractive force." Journal of Forest Research, Vol. 8, pp. 235-246.

10.1007/s10310-003-0032-4
27

Jalonen, J., Järvelä, J., and Aberle, J. (2012). "Leaf area index as vegetation density measure for hydraulic analyses." Journal of Hydraulic Engineering, Vol. 139, No. 5, pp. 461-469.

10.1061/(ASCE)HY.1943-7900.0000700
28

Järvelä, J. (2002). "Flow resistance of flexible and stiff vegetation: A flume study with natural plants." Journal of Hydrology, Vol. 269, pp. 44-54.

10.1016/S0022-1694(02)00193-2
29

Järvelä, J. (2004). "Determination of flow resistance caused by non submerged woody vegetation." International Journal of River Basin Management, Vol. 2, No. 1, pp. 61-70.

10.1080/15715124.2004.9635222
30

Ji, U., Jang, E.-K., Ahn, M., and Bae, I. (2021). "Evaluation of flow resistance coefficient based on physical properties of vegetation in floodplains and numerical simulation of the changes in flow characteristics." Ecology and Resilient Infrastructure, Vol. 8, No. 4, pp. 212-222.

31

Ji, U., Järvelä, J., Västilä, K., and Bae, I. (2023). "Experimentation and modeling of reach-scale vegetative flow resistance due to willow patches." Journal of Hydraulic Engineering, Vol. 149, No. 7, 04023018.

10.1061/JHEND8.HYENG-13293
32

Kim, H.J., Shin, B.K., and Kim, W. (2014). "A study on hydromorphology and vegetation features depending on typology of natural streams in Korea." Journal of Korean Society of Environment and Ecology, Vol. 28, No. 2, pp. 215-234.

10.13047/KJEE.2014.28.2.215
33

Kim, J.S., Kim, W., and Kim, H.J. (2011). "Application of depth- averaged 2-D numerical model for the evaluation of hydraulic effects in river with the riparian forest." Journal of the Korean Society of Civil Engineers, Vol. 31, No. 2B, pp. 165-173.

34

Kim, S.J., and Stoesser, T. (2011). "Closure modeling and direct simulation of vegetation drag in flow through emergent vegetation." Water Resources Research, Vol. 47, No. 10, W10511.

10.1029/2011WR010561
35

Kim, T.B., Bae, H., and Choi, S.U. (2010). "Development and application of a depth-integrated 2-D numerical model for the simulation of hydraulic characteristics in vegetated open- channels." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 6B, pp. 607-615.

36

Kim, W., and Kim, S.-N. (2019) "Analysis of the riparian vegetation expansion in middle size rivers in Korea." Journal of Korea Water Resources Association, Vol. 52, pp. 875-885.

37

Kim, W., Kim, J.S., Kim, Y.J., and Lee, C.J. (2009). Dataset of measured manning's roughness in the Korean Rivers. Technical Report of ECORIVER21, ER 2009-2-1, Korea Institute of Civil Engineering and Building Technology.

38

Korea Water Resources Association (KWRA) (2019). River design standards.

39

Kouwen, N., and Fathi-Moghadam, M. (2000). "Friction factors for coniferous trees along rivers." Journal of Hydraulic Engineering, Vol. 126, pp. 732-740.

10.1061/(ASCE)0733-9429(2000)126:10(732)
40

Kouwen, N., and Li, R. (1980). "Biomechanics of vegetative channel linings." Journal of Hydraulics Division, ASCE, Vol. 106, No. 6, pp. 1085-1103.

10.1061/JYCEAJ.0005444
41

Kouwen, N., and Unny, T.E. (1973). "Flexible roughness in open channels." Journal of Hydraulics Division, ASCE, Vol. 99, No. 5, pp.713-728.

10.1061/JYCEAJ.0003643
42

Kouwen, N., Li, R. M., and Simons, D.B. (1981). "Flow resistance in vegetated waterways." Transactions of the ASAE, Vol. 24, No. 3, pp. 684-698.

10.13031/2013.34321
43

Lee, D.H., and Rhee, D.S. (2023). "Analysis of tree roughness evaluation methods considering depth-dependent roughness coefficient variation." Ecology and Resilient Infrastructure, Vol. 10, No. 3, pp. 51-63.

44

Lee, D.H., Rhee, D.S., and Kim, S.K, (2023). "Analysis of the vegetation roughness effect using HEC-RAS model." The Annual Spring Conference of Korea Academy-Industry Cooperation Society, pp. 519-521.

45

Lee, K., Lee, C., Baek, D., Park, G., Shim, T., Kim, W., Cho, H., and Kim, D. (2023). "Vegetation destruction during an extreme flood: Multilevel modelling of an entire river in southern Korea." Hydrological Processes, Vol. 37, No. 12, e15051. doi: 10.1002/hyp.15051.

10.1002/hyp.15051
46

Li, R.-M., and Shen, H.W. (1973). "Effect of tall vegetations on flow and sediment." Journal of the Hydraulics Division, ASCE, Vol. 99, No. 5, pp. 793-814.

10.1061/JYCEAJ.0003647
47

Li, S., Shi, H., Xiong, Z., Huai, W., and Cheng, N. (2015). "New formulation for the effective relative roughness height of open channel flows with submerged vegetation." Advances in Water Resources, Vol. 86, pp. 46-57.

10.1016/j.advwatres.2015.09.018
48

Li, Y., Wang, Y., Anim, D.O., Tang, C., Du, W., Ni, L., Yu, Z., and Acharya, K. (2014). "Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants." Geomorphology, Vol. 204, pp. 314- 324.

10.1016/j.geomorph.2013.08.015
49

Liu, D., Diplas, P., Fairbanks, J.D., and Hodges, C.C. (2008). "An experimental study of flow through rigid vegetation." Journal of Geophysical Research, Vol. 113, F04015.

10.1029/2008JF001042
50

Liu, M.-Y., Huai, W.-X., Yang, Z.-H., and Zeng, Y.-H. (2020). "A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows." Advances in Water Resources, Vol. 140, 103582.

10.1016/j.advwatres.2020.103582
51

Luhar, M., and Nepf, N. (2013). "From the blade scale to the reach scale: a characterization of aquatic vegetative drag." Advanced Water Resources, Vol. 51, pp. 305-316.

10.1016/j.advwatres.2012.02.002
52

Masterman, R., and Thorne, C.R. (1992). "Predicting influence of bank vegetation on channel capacity." Journal of Hydrological Engineering, Vol. 118, No.7, pp. 1052-1058.

10.1061/(ASCE)0733-9429(1992)118:7(1052)
53

Nepf, H.M. (1999). "Drag, turbulence, and diffusion in flow through emergent vegetation." Water Resources Research, Vol. 35, No. 2, pp. 479-489.

10.1029/1998WR900069
54

Nepf, H.M., and Vivoni, E.R. (2000). "Flow structure in depth- limited, vegetated flow." Journal of Geophysical Research, Vol. 105, No. C12, pp. 28,547-28,557.

10.1029/2000JC900145
55

Palmer, V.J. (1945). "A method for designing vegetated waterways." Journal of Agricultural Engineering, Vol. 26, pp. 516-520.

56

Petryk, S., and Bosmajian, G. (1975). "Analysis of flow through vegetation." Journal of Hydraulic Division, ASCE, Vol. 101, pp. 871-884.

10.1061/JYCEAJ.0004397
57

Rhee, D.S., Lee, D.H., and Kim, M.H. (2012). "Roughness coefficients evaluation of the Korean riparian Vegetation." Journal of Korean Society of Civil Engineering, Vol. 32, No. 6B, pp. 345-354.

10.12652/Ksce.2012.32.6B.345
58

Rhee, D.S., Woo, H., Kwon, B.A., and Ahn, H.K. (2006). "Test study on flow resistance for some selected vegetations." The 2006 Annual Conference of Korea Water Resources Association, pp. 1291-1294.

59

Rhee, D.S., Woo, H., Kwon, B.A., and Ahn, H.K. (2008). "Hydraulic resistance of some selected vegetation in open channel flows." River Research and Applications, Vol. 24, pp. 673-687.

10.1002/rra.1143
60

Rodi, W. (2017). "Turbulence modeling and simulation in hydraulics: A historical review." Journal of Hydraulics Engineering, Vol. 143, No. 5, 03117001.

10.1061/(ASCE)HY.1943-7900.0001288
61

Shimizu, Y., and Tsujimoto, T. (1994). "Numerical analysis of turbulent open-channel flow over vegetation layer using a k-eps turbulence model." Journal of Hydraulic Engineering, Vol. 11, No. 2, pp. 57-67.

62

Shimizu, Y., Tsujimoto, T., Nakagawa, H., and Kitamura, T. (1991). "Experimental study on flow over rigid vegetation simulated by cylinders with equi-spacing." Proceedings of Japan Society of Civil Engineering, Vol. 438, pp. 31-40.

10.2208/jscej.1991.438_31
63

Stoesser, T., Kim, S.J., and Diplas, P. (2010). "Turbulent flow through idealized emergent vegetation." Journal of Hydraulic. Engineering, Vol. 136, No. 12, pp. 1003-1017.

10.1061/(ASCE)HY.1943-7900.0000153
64

Stoesser, T., Liang, C., Rodi, W., and Jirka, G.H. (2006). "Large-eddy simulation of fully-developed turbulent flow through submerged vegetation." Proceedings International Conference of Fluvial Hydraulics - River Flow 2006, Lisbon, Portugal, Vol. 1, pp. 227-234.

65

Stone, B.M., and Shen, H.T. (2002). "Hydraulic resistance of flow in channels with cylindrical roughness." Journal of Hydraulic Engineering, Vol. 128, No. 5, pp. 500-506.

10.1061/(ASCE)0733-9429(2002)128:5(500)
66

Tanino, Y., and Nepf, H.M. (2008). "Laboratory investigation of mean drag in a random array of rigid, emergent cylinders." Journal of Hydraulic Engineering, Vol. 134, No. 1, pp. 34-41.

10.1061/(ASCE)0733-9429(2008)134:1(34)
67

Tsujimoto, T. (1999). "Fluvial processes in streams with vegetation." Journal of Hydraulic Research, Vol. 37, No. 6, pp. 789-803.

10.1080/00221689909498512
68

Västilä, K., and Järvelä, J. (2014). "Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem." Water Resources Research, Vol. 50, No. 1, pp. 229-245.

10.1002/2013WR013819
69

Västilä, K., Järvelä, J., and Aberle, J. (2013). "Characteristic reference areas for estimating flow resistance of natural foliated vegetation." Journal of Hydrology, Vol. 492, pp. 49-60.

10.1016/j.jhydrol.2013.04.015
70

Vogel, S. (1994). Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton, NJ, U.S.

71

Walter, B., Järvelä, J., and Västilä, K. (2024). "New formulas addressing flow resistance of floodplain vegetation from emergent to submerged conditions." International Journal of River Basin Management, Vol. 22, No. 3, pp. 333-349.

10.1080/15715124.2022.2143512
72

Wang, J., and Zhang, Z. (2019). "Evaluating riparian vegetation roughness computation methods integrated within HEC-RAS." Journal of Hydraulic Engineering, Vol. 145, No. 6, 04019020.

10.1061/(ASCE)HY.1943-7900.0001597
73

Whittaker, P., Wilson, C.A., and Aberle, J. (2015). "An improved Cauchy number approach for predicting the drag and reconfiguration of flexible vegetation." Advanced Water Resources, Vol. 83, pp. 28-35.

10.1016/j.advwatres.2015.05.005
74

Wilson, C.A.M.E., Yagci, O., Rauch, H.P., and Olsen, N.R.B. (2006). "3D numerical modelling of a willow vegetated river/floodplain system." Journal of Hydrology, Vol. 327, No. 1-2, pp. 13-21.

10.1016/j.jhydrol.2005.11.027
75

Woo, H. (2008). "White river? Green river?, Water for Future." Magazine of Korea Water Resources Association, Vol. 41, No. 12, pp. 38-47.

76

Woo, H., and Park, M.H. (2016). "Cause-based categorization of the riparian vegetative recruitment and corresponding research direction." Ecology and Resilient Infrastructure, Vol. 3, No. 3, pp. 207-211.

10.17820/eri.2016.3.3.207
77

Woo, H., Jang, C., Ji, U., and Kim, J.K. (2022). River change and adaptation. Gyomoonsa, pp. 324-327.

78

Woo, H., Kim, W., and Ji, U. (2015). River hydraulics. Cheongmunkak, pp. 94-95.

79

Wu, F.C., Shen, H.W., and Chou, Y.J. (1999). "Variation of roughness coefficients for unsubmerged and submerged vegetation." Journal of Hydraulic Engineering, Vol. 125, No. 9, pp. 934-942.

10.1061/(ASCE)0733-9429(1999)125:9(934)
80

Yang, W., and Choi, S. (2010). "A two-layer approach for depth- limited open-channel flows with submerged vegetation." Journal of Hydraulic Research, Vol. 48, pp. 466-475.

10.1080/00221686.2010.491649
81

Yen, B.C. (2002). "Open channel flow resistance." Journal of Hydraulic Engineering, Vol. 128, No. 1, pp. 20-39.

10.1061/(ASCE)0733-9429(2002)128:1(20)
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 58
  • No :3
  • Pages :193-207
  • Received Date : 2024-12-27
  • Revised Date : 2025-01-14
  • Accepted Date : 2025-01-15