All Issue

2021 Vol.54, Issue 9 Preview Page

Research Article

September 2021. pp. 667-680
Abstract
References
1
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems, accessed 4 September 2021, <https://tensorflow.org/>.
2
Bonsal, B.R., Zhang, X., Vincent, L.A., and Hogg, W.D. (2001). "Characteristics of daily and extreme temperatures over Canada." Journal of Climate, Vol. 14, pp. 1959-1976. 10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2
3
Breiman, L. (2001). "Random forests." Machine Learning, Vol. 45, No. 1, pp. 5-32. 10.1023/A:1010933404324
4
Chevalier, R.F., Hoogenboom, G., McClendon, R.W., and Paz, J.O. (2012). "A web-based fuzzy expert system for frost warnings in horticultural crops." Environmental Modelling and Software, Vol. 35, pp. 84-91. 10.1016/j.envsoft.2012.02.010
5
Ding, L., Noborio, K., and Shibuya, K. (2019). "Frost forecast using machine learning-from association to causality." Procedia Computer Science, Vol. 159, pp. 1001-1010. 10.1016/j.procs.2019.09.267
6
Easterling, D.R. (2002). "Recent changes in frost days and the frost-free season in the United States." Bulletin of the American Meteorological Society, Vol. 83, No. 9, pp. 1327-1332. 10.1175/1520-0477-83.9.1327
7
Frich, P., Alexander, L.V., Della-Marta, P., Gleason, B., Haylock, M., Tank, A.K., and Peterson, T. (2002). "Global changes in climatic extremes during the 2nd half of the 20th century." Climate Research, Vol. 19, pp. 193-212. 10.3354/cr019193
8
Han, J. H., Choi., J.J., Chung, U., Cho, K.S., and Chun, J.P. (2009). "Frostfall forecasting in the Naju pear production area based on discriminant analysis of climatic data." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 4, pp. 135-142. (in Korean with English abstract) 10.5532/KJAFM.2009.11.4.135
9
Heino, R., Brazdil, R., Forland, E., Tuomenvirta, H., Alexandersson, H., Beniston, M., Pfister, C., Rebetez, M., Rosenhagen, G., Rosner, S., and Wigib, J. (1999). "Progress in the study of climate extremes in northern and central Europe." Climatic Change, Vol. 42, pp. 151-181. 10.1023/A:1005420400462
10
Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780. 10.1162/neco.1997.9.8.17359377276
11
Hosmer Jr, D.W., Lemeshow, S., and Sturdivant, R.X. (2013). Applied logistic regression. John Wiley & Sons. Inc., Hoboken, NJ, U.S., p. 528. 10.1002/9781118548387
12
Kalma, J.D., Laughlin, G.P., Caprio, J.M., and Hamer, P.J.C. (1992). The bioclimatology of frost: Its occurrence, impact and protection. Springer, Berlin, Germany, p.144. 10.1007/978-3-642-58132-8
13
Kim, Y., Shim, K.-M., Jung, M.-P., and Choi, I.-T. (2017). "Study on the estimation of frost occurrence classification using machine learning methods." Korean Journal of Agricultural and Forest Meteorology, Vol. 19, No. 3, pp. 86-92. (in Korean with English abstract)
14
Kleinbaum, D.G., Dietz, K., Gail, M., Klein, M., and Klein, M. (2002). Logistic regression. Springer, New York, NY, U.S., p. 702.
15
Kwon, Y.-A., Lee, H.-S. Kown, W.-T., and Boo, K.-O. (2008). "The weather characteristics of frost occurrence days for protecting crops against frost damage." Journal of the Korean Geographical Society, Vol. 43, No. 6, pp. 824-842. (in Korean with English abstract)
16
Lee, H., Chun, J.A,. Han, H.-H., and Kim, S. (2016). "Prediction of frost occurrences using statistical modeling approaches." Advances in Meteorology, Vol. 2016, Article ID 2075186. 10.1155/2016/2075186
17
Lee, S. (2005). "Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data." International Journal of Remote Sensing, Vol. 26, No. 7, pp. 1477-1491. 10.1080/01431160412331331012
18
Naghibi, S.A., Pourghasemi, H.R., and Dixon, B. (2016). "GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran." Environmental Monitoring and Assessment, Vol. 188, No. 1, p. 44. 10.1007/s10661-015-5049-626687087
19
Ozdemir, A. (2011). "Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)." Journal of Hydrology, Vol. 405, No. 1-2, pp. 123-136. 10.1016/j.jhydrol.2011.05.015
20
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). "Scikit-learn: Machine learning in Python." Journal of Machine Learning Research, Vol. 12, pp. 2825-2830.
21
Rozante, J.R., Gutierrez, E.R., da Silva Dias, P.L., de Almeida Fernandes, A., Alvim, D.S., and Silva, V.M. (2020). "Development of an index for frost prediction: Technique and validation." Meteorological Applications, Vol. 27, No. 1, pp. 1-12. 10.1002/met.1807
22
Sgubin, G., Swingedouw, D., Dayon, G., de Cortazar-Atauri, I.G., Ollat, N., Page, C., and van Leeuwen, C. (2018). "The risk of tardive frost damage in French vineyards in a changing climate." Agricultural and Forest Meteorology, Vol. 250-251, pp. 226-242. 10.1016/j.agrformet.2017.12.253
23
Snyder, R.L., Paw, U.K.T., and Thompson, J.F. (1987). Passive frost protection of trees and vines, accessed 4 September 2121, <https://anrcatalog.ucanr.edu/pdf/21429e.pdf>.
24
Temeyer, B.R., Gallus Jr., W.A., Jungbluth, K.A., Burkheimer, D., and McCauley, D. (2003). "Using an Artificial neural network to predict parameters for frost deposition on Iowa Bridgeways." Proceedings of the 2003 Mid-Continent Transportation Research Symposium. Iowa State University, August 21-22, 2003, Ames, IA. accessed 4 September 2021, <http://www.ctre.iastate.edu/pubs/midcon2003/TemeyerFrost.pdf>.
25
Vitasse, Y., Schneider, L., Rixen, C., Christen, D., and Rebetez, M. (2018). "Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades." Agricultural and Forest Meteorology, Vol. 248, pp. 60-69. 10.1016/j.agrformet.2017.09.005
26
Xiao, L., Liu, L., Asseng, S., Xia, Y., Tang, L, Liu, B., Cao, W., and Zhu, Y. (2018). "Estimating spring frost and its impact on yield across winter wheat in China." Agricultural and Forest Meteorology, Vol. 260-261, pp. 154-164. 10.1016/j.agrformet.2018.06.006
27
Xue, D., De Baets, B., Van Cleemput, O., Hennessy, C., Berglund, M., and Boeckx, P. (2013). "Classification of nitrate polluting activities through clustering of isotope mixing model outputs." Journal of Environmental Quality, Vol. 42, No. 5, pp. 1486-1497. 10.2134/jeq2012.045624216426
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 54
  • No :9
  • Pages :667-680
  • Received Date :2021. 06. 08
  • Revised Date :2021. 07. 04
  • Accepted Date : 2021. 07. 04