Research Article
Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J. (2019). "Machine learning for precipitation nowcasting from radar images." arXiv preprint,arXiv:1912.12132.
Ayzel, G., Scheffer, T., and Heistermann, M. (2020). "RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting." Geoscientific Model Development, Vol. 13, No. 6, pp. 2631-2644. doi: 10.5194/gmd-13-2631-2020.
10.5194/gmd-13-2631-2020Basist, A., Bell, G.D., and Meentemeyer, V. (1994). "Statistical relationships between topography and precipitation patterns." Journal of Climate, Vol. 7, No. 9, pp. 1305-1315.
10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2Berenguer, M., Sempere-Torres, D., and Pegram, G.G.S. (2011). "SBMcast - An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation." Journal of Hydrology, Vol. 404, No. 3, pp. 226-240. doi: 10.1016/j.jhydrol.2011.04.033.
10.1016/j.jhydrol.2011.04.033Berenguer, M., Surcel, M., Zawadzki, I., Xue, M., and Kong, F. (2012). "The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models." Part II: Intercomparison among Numerical Models and with Nowcasting." Monthly Weather Review, Vol. 140, No. 8, pp. 2689-2705. doi: 10.1175/MWR-D-11-00181.1.
10.1175/MWR-D-11-00181.1Choi, S., and Kim, Y. (2022). "Rad-cGAN v1.0: Radar-based precipitation nowcasting model with conditional generative adversarial networks for multiple dam domains." Geoscientific Model Development, Vol. 15, No. 15, pp. 5967-5985.
10.5194/gmd-15-5967-2022Clark, A., Donahue, J., and Simonyan, K. (2019). "Adversarial video generation on complex datasets." arXiv preprint arXiv:1907.06571.
Düben, P.D., McNamara, H., and Palmer, T.N. (2014). "The use of imprecise processing to improve accuracy in weather & climate prediction." Journal of Computational Physics, Vol. 271, pp. 2-18.
10.1016/j.jcp.2013.10.042Germann, U., and Zawadzki, I. (2002). "Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology." Monthly Weather Review, Vol. 130, No. 12, pp. 2859-2873.
10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). "Generative adversarial nets." Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, Canada, pp. 2672-2680.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D. et al. (2020) "The ERA5 global reanalysis." Quarterly Journal of the Royal Meteorological Society, Vol. 146, No. 730, pp. 1999-2049. https://doi.org/10.1002/qj.3803
10.1002/qj.3803Hong, S.-Y., Dudhia, J., and Chen, S.-H. (2004). "A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation." Monthly Weather Review, Vol. 132, No. 1, pp. 103-120.
10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2Hong, Y., Hsu, K.-L., Moradkhani, H., and Sorooshian, S. (2006). "Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response." Water Resources Research, Vol. 42, W08421. doi: 10.1029/2005WR004398.
10.1029/2005WR004398Isola, P., Zhu, J., Zhou, T., and Efros, A.A. (2017). "Image-to-image translation with conditional adversarial networks." 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, U.S., pp.1125-1134.
10.1109/CVPR.2017.632Jiménez, P.A., Dudhia, J., González-Rouco, J.F., Navarro, J., Montávez, J.P., and García-Bustamante, E. (2012). "A revised scheme for the WRF surface layer formulation." Monthly Weather Review, Vol. 140, No. 3, pp. 898-918.
10.1175/MWR-D-11-00056.1Kain, J.S., and Fritsch, J.M. (1990). "A one-dimensional entraining/ detraining plume model and its application in convective parameterization." Journal of Atmospheric Sciences, Vol. 47, No. 23, pp. 2784-2802.
10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2Kusaka, H., Kondo, H., Kikegawa, Y., and Kimura, F. (2001). "A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models." Boundary-layer Meteorology, Vol. 101, pp. 329-358.
10.1023/A:1019207923078Lee, B.R., Lee, D.G., Nam, K.Y., Lee, Y.G., and Kim, B.J. (2015). "Study on heat environment changes in Seoul metropolitan area using WRF-UCM: A comparison between 2000 and 2009." Atmosphere, Vol. 25, No. 3, pp. 483-499.
10.14191/Atmos.2015.25.3.483Lee, J.G., and Sung, H.M. (2013). "A WRF sensitivity study in precipitation amount over Yeongdong Province to the choice of nesting methods: Case study." Journal of the Korean Society of Hazard Mitigation, Vol. 13, No. 1, pp. 105-119.
10.9798/KOSHAM.2013.13.1.105Lim, K.S., and Hong, S. (2010). "Development of an effective double- moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models." Monthly Weather Review, Vol. 138, No. 5, pp. 1587-1612. doi: 10.1175/2009MWR2968.1.
10.1175/2009MWR2968.1Lin, Y., and Colle, B.A. (2011). "A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics." Monthly Weather Review, Vol. 139, No. 3, pp. 1013-1035.
10.1175/2010MWR3293.1Ma, Z., Zhao, C., Gong, J., Zhang, J., Li, Z., Sun, J., Liu, Y., Chen, J., and Jiang, Q. (2021). "Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system." Geoscientific Model Development, Vol. 14, No. 1, pp. 205-221. doi: 10.5194/gmd-14-205-2021.
10.5194/gmd-14-205-2021Marshall, J.S., and Palmer, W.M.K. (1948). "The distribution of raindrops with size." Journal of Atmospheric Sciences, Vol. 5, No. 4, pp. 165-166.
10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2Mirza, M., and Osindero, S. (2014). "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784.
Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., and Clough, S.A. (1997). "Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave." Journal of Geophysical Research: Atmospheres, Vol. 102, No. D14, pp. 16663-16682.
10.1029/97JD00237Oh, J.-S., Lee, J.-H., Woo, J.-W., Lee, D.-I., Lee, S.-H., Seo, J., and Moon, N. (2020). "Performance evaluation of the high- resolution WRF meteorological Simulation over the Seoul Metropolitan Area." Atmosphere, Vol. 30, No. 3, pp. 257-276. doi: 10.14191/ATMOS.2020.30.3.257.
Ohara, N., Kavvas, M.L., Kure, S., Chen, Z.Q., Jang, S., and Tan, E. (2011). "Physically based estimation of maximum precipitation over American river watershed, California." Journal of Hydrologic Engineering, Vol. 16, No. 4, pp. 351-361.
10.1061/(ASCE)HE.1943-5584.0000324Prudhomme, C., and Reed, D.W. (1998). "Relationships between extreme daily precipitation and topography in a mountainous region: A case study in Scotland." International Journal of Climatology: A Journal of the Royal Meteorological Society, Vol. 18, No. 13, pp. 1439-1453.
10.1002/(SICI)1097-0088(19981115)18:13<1439::AID-JOC320>3.0.CO;2-7Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., and Madge, S., et al. (2021). "Skilful precipitation nowcasting using deep generative models of radar." Nature, Vol. 597, No. 7878, pp. 672-677. doi: 10.1038/s41586-021-03854-z.
10.1038/s41586-021-03854-z34588668PMC8481123Rüttgers, M., Lee, S., Jeon, S., and You, D. (2019). "Prediction of a typhoon track using a generative adversarial network and satellite images." Scientific Reports, Vol. 9, No. 1, 6057. doi: 10.1038/s41598-019-42339-y.
10.1038/s41598-019-42339-y30988405PMC6465318Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., and Woo, W.C. (2015). "Convolutional LSTM network: A machine learning approach for precipitation nowcasting." Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15), Vol. 1. MIT Press, Cambridge, MA, U.S., pp. 802-810.
Skamarock, W., Klemp, J., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W., Powers, J.G., Duda, M.G., and Barker, D., et al. (2021). A description of the advanced research WRF model version 4.3. NSF NCAR and UCAR, accessed 9 January 2025, <https://opensky.ucar.edu/islandora/object/technotes%3A588>.
Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M. (2017). "Smoothgrad: removing noise by adding noise." arXiv preprint arXiv:1706.03825.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M.A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenca, R.H. (2004). "Implementation and verification of the unified NOAH land surface model in the WRF model." 20th Conference on Weather Analysis and Forecasting / 16th Conference on Numerical Weather Prediction, Seattle, WA, U.S. pp. 11-15.
Trebing, K., Staǹczyk, T., and Mehrkanoon, S. (2021). "SmaAt- UNet: Precipitation nowcasting using a small attention-UNet architecture." Pattern Recognition Letters, Vol. 145, pp. 178- 186. doi: 10.1016/j.patrec.2021.01.036.
10.1016/j.patrec.2021.01.036Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., and Kennedy, P.J. (2016). "Training deep neural networks on imbalanced data sets." 2016 International Joint Conference on Neural Networks (IJCNN), IEEE, Vancouver, BC, Canada, pp. 4368-4374.
10.1109/IJCNN.2016.7727770Won, J., Choi, J., Lee, O., and Kim, S. (2019). "Evaluation of rainfall- event-simulation performance of the WRF model combined with ERA-interim data: Focus on the rainfall event in Imjin River Basin in 1999." Journal of the Korean Society of Hazard Mitigation, Vol. 19, No. 4, pp. 205-213. doi: 10.9798/KOSHAM.2019.19.4.205.
10.9798/KOSHAM.2019.19.4.205World Meteorological Organization (WMO) (2017). Guidelines for nowcasting techniques, accessed 9 January 2025, <https://library.wmo.int/records/item/55666-guidelines-for-nowcasting-techniques?offset=1>.
- Publisher :KOREA WATER RESOURECES ASSOCIATION
- Publisher(Ko) :한국수자원학회
- Journal Title :Journal of Korea Water Resources Association
- Journal Title(Ko) :한국수자원학회 논문집
- Volume : 58
- No :1
- Pages :53-66
- Received Date : 2024-09-11
- Revised Date : 2024-12-04
- Accepted Date : 2024-12-09
- DOI :https://doi.org/10.3741/JKWRA.2025.58.1.53