All Issue

2023 Vol.56, Issue 12 Preview Page

Research Article

31 December 2023. pp. 939-953
Abstract
References
1
An, H., and Yu, S. (2014). "Finite volume integrated surface-subsurface flow modeling on nonorthogonal grids." Water Resources Research, Vol. 50, No. 3, pp. 2312-2328. 10.1002/2013WR013828
2
Ayog, J.L., Kesserwani, G., Shaw, J., Sharifian, M.K., and Bau, D. (2021). "Second-order discontinuous Galerkin flood model: Comparison with industry-standard finite volume models." Journal of Hydrology, Vol. 594, 125924. 10.1016/j.jhydrol.2020.125924
3
Bandai, T., and Ghezzehei, T.A. (2022). "Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition." Hydrology and Earth System Sciences, Vol. 26, No. 16, pp. 4469-4495. 10.5194/hess-26-4469-2022
4
Bates, P.D., Dawson, R.J., Hall, J.W., Horritt, M.S., Nicholls, R.J., Wicks, J., and Hassan, M.A.A.M. (2005). "Simplified two-dimensional numerical modelling of coastal flooding and example applications." Coastal Engineering, Vol. 52, No. 9, pp. 793-810. 10.1016/j.coastaleng.2005.06.001
5
Bates, P.D., Horritt, M.S., and Fewtrell, T.J. (2010). "A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling." Journal of Hydrology, Vol. 387, No. 1-2, pp. 33-45. 10.1016/j.jhydrol.2010.03.027
6
Beck, C., E., W., and Jentzen, A. (2019). "Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations." Journal of Nonlinear Science, Vol. 29, pp. 1563-1619. 10.1007/s00332-018-9525-3
7
Bermúdez, A., Dervieux, A., Desideri, J.-A., and Vázquez, M.E. (1998). "Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes." Computer Methods in Applied Mechanics and Engineering, Vol. 155, No. 1-2, pp. 49-72. 10.1016/S0045-7825(97)85625-3
8
Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G.E. (2021). "Physics-informed neural networks (PINNs) for fluid mechanics: A review." Acta Mechanica Sinica, Vol. 37 No. 12, pp. 1727-1738. 10.1007/s10409-021-01148-1
9
Cea, L., and Bladé, E. (2015). "A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications." Water Resources Research, Vol. 51 No. 7, pp. 5464-5486. 10.1002/2014WR016547
10
Chen, Y., Xu, Y., Wang, L., and Li, T. (2023). "Modeling water flow in unsaturated soils through physics-informed neural network with principled loss function." Computers and Geotechnics, Vol. 161, 105546. 10.1016/j.compgeo.2023.105546
11
de Saint-Venant, A.J.-C. (1871). "Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit." Academic de Sci. Comptes Redus, Vol. 73 No. 147-154, pp. 237-240.
12
Feng, D., Tan, Z., and He, Q. (2023). "Physics-informed neural networks of the Saint-Venant equations for downscaling a large-scale river model." Water Resources Research, Vol. 59 No. 2, e2022WR033168. 10.1029/2022WR033168
13
Ferrari, A., Viero, D.P., Vacondio, R., Defina, A., and Mignosa, P. (2019). "Flood inundation modeling in urbanized areas: A mesh-independent porosity approach with anisotropic friction." Advances in Water Resources, Vol. 125, pp. 98-113. 10.1016/j.advwatres.2019.01.010
14
Gao, H., Sun, L., and Wang, J.-X. (2021). "PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain." Journal of Computational physics, Vol. 428, 110079. 10.1016/j.jcp.2020.110079
15
Guo, Z., Leitao, J.P., Simões, N.E., and Moosavi, V. (2021). "Data-driven flood emulation: Speeding up urban flood predictions by deep convolutional neural networks." Journal of Flood Risk Management, Vol. 14, No. 1, e12684. 10.1111/jfr3.12684
16
Hai, P.T., Masumoto, T., and Shimizu, K. (2008). "Development of a two-dimensional finite element model for inundation processes in the Tonle Sap and its environs." Hydrological Processes: An International Journal, Vol. 22, No. 9, pp. 1329-1336. 10.1002/hyp.6942
17
Han, J., Jentzen, A., and E.W. (2018). "Solving high-dimensional partial differential equations using deep learning." Proceedings of the National Academy of Sciences, Vol. 115, No. 34, pp. 8505-8510. 10.1073/pnas.171894211530082389PMC6112690
18
Hodges, B.R. (2019). "Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage." Hydrology and Earth System Sciences, Vol. 23, No. 3, pp. 1281-1304. 10.5194/hess-23-1281-2019
19
Hunter, N.M., Horritt, M.S., Bates, P.D., Wilson, M.D., and Werner, M.G. (2005). "An adaptive time step solution for raster-based storage cell modelling of floodplain inundation." Advances in Water Resources, Vol. 28, No. 9, pp. 975-991. 10.1016/j.advwatres.2005.03.007
20
Jagtap, A.D., Mao, Z., Adams, N., and Karniadakis, G.E. (2022). "Physics-informed neural networks for inverse problems in supersonic flows." Journal of Computational physics, Vol. 466, 111402. 10.1016/j.jcp.2022.111402
21
Jin, X., Cai, S., Li, H., and Karniadakis, G.E. (2021). "NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations." Journal of Computational physics, Vol. 426, 109951. 10.1016/j.jcp.2020.109951
22
Kabir, S., Patidar, S., Xia, X., Liang, Q., Neal, J., and Pender, G. (2020). "A deep convolutional neural network model for rapid prediction of fluvial flood inundation." Journal of Hydrology, Vol. 590, 125481. 10.1016/j.jhydrol.2020.125481
23
Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., and Yang, L. (2021). "Physics-informed machine learning." Nature Reviews Physics, Vol. 3, No. 6, pp. 422-440. 10.1038/s42254-021-00314-5
24
Kuffour, B.N., Engdahl, N.B., Woodward, C.S., Condon, L.E., Kollet, S., and Maxwell, R.M. (2020). "Simulating coupled surface-subsurface flows with ParFlow v3. 5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model." Geoscientific Model Development, Vol. 13, No. 3, pp. 1373-1397. 10.5194/gmd-13-1373-2020
25
Lee, S.Y., Park, C.-S., Park, K., Lee, H.J., and Lee, S. (2022). "A Physics-informed and data-driven deep learning approach for wave propagation and its scattering characteristics." Engineering with Computers, Vol. 39, pp. 1-17. 10.1007/s00366-022-01640-7
26
Liu, Y., and Pender, G. (2015). "A flood inundation modelling using v-support vector machine regression model." Engineering Applications of Artificial Intelligence, Vol. 46, pp. 223-231. 10.1016/j.engappai.2015.09.014
27
Lu, L., Meng, X., Mao, Z., and Karniadakis, G.E. (2021). "DeepXDE: A deep learning library for solving differential equations." SIAM Review, Vol. 63, No. 1, pp. 208-228. 10.1137/19M1274067
28
Lu, X., Mao, B., Zhang, X., and Ren, S. (2020). "Well-balanced and shock-capturing solving of 3D shallow-water equations involving rapid wetting and drying with a local 2D transition approach." Computer Methods in Applied Mechanics and Engineering, Vol. 364, 112897. 10.1016/j.cma.2020.112897
29
Lundgren, L., and Mattsson, K. (2020). "An efficient finite difference method for the shallow water equations." Journal of Computational physics, Vol. 422, 109784. 10.1016/j.jcp.2020.109784
30
Mao, Z., Jagtap, A. D., and Karniadakis, G.E. (2020). "Physics-informed neural networks for high-speed flows." Computer Methods in Applied Mechanics and Engineering, Vol. 360, 112789. 10.1016/j.cma.2019.112789
31
Marras, S., Kopera, M.A., Constantinescu, E.M., Suckale, J., and Giraldo, F.X. (2018). "A residual-based shock capturing scheme for the continuous/discontinuous spectral element solution of the 2D shallow water equations." Advances in Water Resources, Vol. 114, pp. 45-63. 10.1016/j.advwatres.2018.02.003
32
McClenny, L., and Braga-Neto, U. (2020). "Self-adaptive physics-informed neural networks using a soft attention mechanism." arXiv Preprint, arXiv:2009.04544.
33
Ni, Y., Cao, Z., Liu, Q., and Liu, Q. (2020). "A 2D hydrodynamic model for shallow water flows with significant infiltration losses." Hydrological Processes, Vol. 34, No. 10, pp. 2263-2280. 10.1002/hyp.13722
34
Peng, G.C., Alber, M., Buganza Tepole, A., Cannon, W.R., De, S., Dura-Bernal, S., Garikipati, K., Karniadakis, G., Lytton, W.W., and Perdikaris, P. (2021). "Multiscale modeling meets machine learning: What can we learn?." Archives of Computational Methods in Engineering, Vol. 28, pp. 1017-1037. 10.1007/s11831-020-09405-534093005PMC8172124
35
Raissi, M., Perdikaris, P., and Karniadakis, G.E. (2019). "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations." Journal of Computational Physics, Vol. 378, pp. 686-707. 10.1016/j.jcp.2018.10.045
36
Ren, S., Wu, S., and Weng, Q. (2023). "Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships." Bioresource Technology, Vol. 369, 128472. 10.1016/j.biortech.2022.12847236509306
37
Riley, P. (2019). "Three pitfalls to avoid in machine learning." Nature, Vol. 572, No. 7767, pp. 27-29. 10.1038/d41586-019-02307-y31363197
38
Sirignano, J., and Spiliopoulos, K. (2018). "DGM: A deep learning algorithm for solving partial differential equations." Journal of Computational physics, Vol. 375, pp. 1339-1364. 10.1016/j.jcp.2018.08.029
39
Soares-Frazao, S., Canelas, R., Cao, Z., Cea, L., Chaudhry, H.M., Die Moran, A., El Kadi, K., Ferreira, R., Cadórniga, I.F., and Gonzalez-Ramirez, N. (2012). "Dam-break flows over mobile beds: experiments and benchmark tests for numerical models." Journal of Hydraulic Research, Vol. 50, No. 4, pp. 364-375. 10.1080/00221686.2012.689682
40
Sun, L., and Wang, J.-X. (2020). "Physics-constrained bayesian neural network for fluid flow reconstruction with sparse and noisy data." Theoretical and Applied Mechanics Letters, Vol. 10, No. 3, pp. 161-169. 10.1016/j.taml.2020.01.031
41
Tartakovsky, A.M., Marrero, C.O., Perdikaris, P., Tartakovsky, G.D., and Barajas-Solano, D. (2020). "Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems." Water Resources Research, Vol. 56, No. 5, e2019WR026731. 10.1029/2019WR026731
42
Vacondio, R., Dal Palù, A., and Mignosa, P. (2014). "GPU-enhanced finite volume shallow water solver for fast flood simulations." Environmental Modelling and Software, Vol. 57, pp. 60-75. 10.1016/j.envsoft.2014.02.003
43
Valiani, A., and Caleffi, V. (2019). "Dam break in rectangular channels with different upstream-downstream widths." Advances in Water Resources, Vol. 132, 103389. 10.1016/j.advwatres.2019.103389
16
Van, C.P., Gourgue, O., Sassi, M., Hoitink, A., Deleersnijder, E., and Soares-Frazão, S. (2016). "Modelling fine-grained sediment transport in the Mahakam land-sea continuum, Indonesia." Journal of Hydro-environment Research, Vol. 13, pp. 103-120. 10.1016/j.jher.2015.04.005
17
Viero, D.P., and Valipour, M. (2017). "Modeling anisotropy in free-surface overland and shallow inundation flows." Advances in Water Resources, Vol. 104, pp. 1-14. 10.1016/j.advwatres.2017.03.007
46
Vijayaraghavan, S., Wu, L., Noels, L., Bordas, S., Natarajan, S., and Beex, L.A. (2023). "A data-driven reduced-order surrogate model for entire elastoplastic simulations applied to representative volume elements." Scientific Reports, Vol. 13, No. 1, 12781. 10.1038/s41598-023-38104-x37550337PMC10406896
47
Wang, N., Zhang, D., Chang, H., and Li, H. (2020). "Deep learning of subsurface flow via theory-guided neural network." Journal of Hydrology, Vol. 584, 124700. 10.1016/j.jhydrol.2020.124700
48
Wang, S., Teng, Y., and Perdikaris, P. (2021). "Understanding and mitigating gradient flow pathologies in physics-informed neural networks." SIAM Journal on Scientific Computing, Vol. 43, No. 5, pp. A3055-A3081. 10.1137/20M1318043
49
West, D.W., Kubatko, E.J., Conroy, C.J., Yaufman, M., and Wood, D. (2017). "A multidimensional discontinuous Galerkin modeling framework for overland flow and channel routing." Advances in Water Resources, Vol. 102, pp. 142-160. 10.1016/j.advwatres.2017.02.008
50
Wu, C., Zhu, M., Tan, Q., Kartha, Y., and Lu, L. (2023). "A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks." Computer Methods in Applied Mechanics and Engineering, Vol. 403, 115671. 10.1016/j.cma.2022.115671
51
Xu, Y., Kohtz, S., Boakye, J., Gardoni, P., and Wang, P. (2022). "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges." Reliability Engineering and System Safety, Vol. 230, 108900. 10.1016/j.ress.2022.108900
52
Zhang, Z. (2022). "A physics-informed deep convolutional neural network for simulating and predicting transient Darcy flows in heterogeneous reservoirs without labeled data." Journal of Petroleum Science and Engineering, Vol. 211, 110179. 10.1016/j.petrol.2022.110179
53
Zobeiry, N., and Humfeld, K.D. (2021). "A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications." Engineering Applications of Artificial Intelligence, Vol. 101, 104232. 10.1016/j.engappai.2021.104232
Information
  • Publisher :KOREA WATER RESOURECES ASSOCIATION
  • Publisher(Ko) :한국수자원학회
  • Journal Title :Journal of Korea Water Resources Association
  • Journal Title(Ko) :한국수자원학회 논문집
  • Volume : 56
  • No :12
  • Pages :939-953
  • Received Date : 2023-07-24
  • Revised Date : 2023-11-28
  • Accepted Date : 2023-11-30